GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIP Publishing  (3)
  • 1
    In: Physics of Fluids, AIP Publishing, Vol. 33, No. 6 ( 2021-06-01)
    Abstract: Molecular dynamics (MD) and volume of fluid (VOF) are powerful methods for the simulation of dynamic wetting at the nanoscale and macroscale, respectively, but the massive computational cost of MD and the sensitivity and uncertainty of boundary conditions in VOF limit their applications to other scales. In this work, we propose a multiscale simulation strategy by enhancing VOF simulations using self-consistent boundary conditions derived from MD. Specifically, the boundary conditions include a particular slip model based on the molecular kinetic theory for the three-phase contact line to account for the interfacial molecular physics, the classical Navier slip model for the remaining part of the liquid–solid interface, and a new source term supplemented to the momentum equation in VOF to replace the convectional dynamic contact angle model. Each slip model has been calibrated by the MD simulations. The simulation results demonstrate that with these new boundary conditions, the enhanced VOF simulations can provide consistent predictions with full MD simulations for the dynamic wetting of nanodroplets on both smooth and pillared surfaces, and its performance is better than those with other VOF models, especially for the pinning–depinning phenomenon. This multiscale simulation strategy is also proved to be capable of simulating dynamic wetting above the nanoscale, where the pure MD simulations are inaccessible due to the computational cost.
    Type of Medium: Online Resource
    ISSN: 1070-6631 , 1089-7666
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2021
    detail.hit.zdb_id: 1472743-2
    detail.hit.zdb_id: 241528-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: AIP Advances, AIP Publishing, Vol. 11, No. 12 ( 2021-12-01)
    Abstract: Ultrasonic non-destructive testing can effectively detect damage in aircraft composite materials, but traditional manual testing is time-consuming and labor-intensive. To realize the intelligent recognition of aircraft composite material damage, this paper proposes a 1D-YOLO network, in which intelligent fusion recognizes both the ultrasonic C-scan image and ultrasonic A-scan signal of composite material damage. Through training and testing the composite material damage data on aircraft skin, the accuracy of the model is 94.5%, the mean average precision is 80.0%, and the kappa value is 97.5%. The use of dilated convolution and a recursive feature pyramid effectively improves the feature extraction ability of the model. The effectively used Cascade R-CNN (Cascade Region-Convolutional Neural Network) improves the recognition effect of the model, and the effectively used one-dimensional convolutional neural network excludes non-damaged objects. Comparing our network with YOLOv3, YOLOv4, cascade R-CNN, and other networks, the results show that our network can identify the damage of composite materials more accurately.
    Type of Medium: Online Resource
    ISSN: 2158-3226
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2021
    detail.hit.zdb_id: 2583909-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    AIP Publishing ; 2023
    In:  Journal of Applied Physics Vol. 134, No. 9 ( 2023-09-07)
    In: Journal of Applied Physics, AIP Publishing, Vol. 134, No. 9 ( 2023-09-07)
    Abstract: Self-powered photodetectors (PDs) with distinguishable wavelength detection have great application potential in intelligent optoelectronics. However, slow response speed, low responsivity, and signal interference prevent its development and applications. Here, an asymmetric bipolar p-NiO/n-ZnO/p-Si heterojunction is designed as a wavelength-distinguishable PD by using two tandem p–n junctions to reduce the wavelength interference and effectively separate photo-generated carriers. Bidirectional transient photocurrents are achieved in the external circuit for ultraviolet and visible detection by smartly using the pyro-phototronic effect induced by the variations of spontaneous polarization and interface-induced polarization within the p–n–p junction. The transient peak-to-peak current are thus significantly improved by 2310% for 325 nm lasing and by 5950% for 442 nm lasing. This approach can be used to realize wavelength-distinguishable detection through flexibly selecting materials and using the pyro-phototronic effect. The designed PD might have potential applications in the fields of environmental detection, smart imaging, and intelligent optoelectronics.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...