GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIP Publishing  (7)
  • 1
    In: Applied Physics Letters, AIP Publishing, Vol. 106, No. 9 ( 2015-03-02)
    Abstract: Poor aspect profiles of plasmonic lithography patterns are suffering from evanescent waves' scattering loss in metal films and decaying exposure in photoresist. To address this issue, we experimentally report plasmonic cavity lens to enhance aspect profile and resolution of plasmonic lithography. The profile depth of half-pitch (hp) 32 nm resist patterns is experimentally improved up to 23 nm, exceeding in the reported sub-10 nm photoresist depth. The resist patterns are then transferred to bottom resist patterns with 80 nm depth using hard-mask technology and etching steps. The resolution of plasmonic cavity lens up to hp 22 nm is experimentally demonstrated. The enhancement of the aspect profile and resolution is mainly attributed to evanescent waves amplifying from the bottom silver layer and scattering loss reduction with smooth silver films in plasmonic cavity lens. Further, theoretical near-field exposure model is utilized to evaluate aspect profile with plasmonic cavity lens and well illustrates the experimental results.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2015
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    AIP Publishing ; 2015
    In:  The Journal of Chemical Physics Vol. 142, No. 21 ( 2015-06-07)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 142, No. 21 ( 2015-06-07)
    Abstract: The dielectric relaxations in six primary and secondary alkoxy alcohols with varying molecular size and different separation between –O– and hydroxyl group are studied at temperatures around glass transition. The analyses of the apparent full width at half maximum of the main relaxations of the alkoxy alcohols reveal minima in the temperature dependence of the relaxation dispersions. The stretching exponents for the main relaxations of the alkoxy alcohols are also found not to follow the empirical correlations with other dynamic quantities established for generic liquids. A comparison of the relaxation dispersions in the alkoxy alcohols with those in Debye and non-Debye (generic) liquids is presented. The impacts of the β-relaxations on the apparent main relaxation widths are reviewed for molecular glass formers.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2015
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Applied Physics Letters, AIP Publishing, Vol. 102, No. 1 ( 2013-01-07)
    Abstract: We designed a tandem organic light-emitting device based on an organic photovoltaic-type charge generation connector (CGC) of fullerene carbon 60/copper(II) phthalocyanine. The CGC can absorb a portion of photons radiated from emission zone and form excitons which disassociated into free charges at PN junction interface without energy barrier, leading to low driving voltage and better charge balance. The efficiency increases remarkably with increasing current density, even beyond two folds compared with single unit device under higher current density, meaning slower roll-off. The whole process is a positive cycle, and actually enhances the utilization of internal radiation and the overall performance of tandem device.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2013
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    AIP Publishing ; 2015
    In:  The Journal of Chemical Physics Vol. 143, No. 16 ( 2015-10-28)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 143, No. 16 ( 2015-10-28)
    Abstract: The glass transition and dynamics of benzene are studied in binary mixtures of benzene with five glass forming liquids, which can be divided into three groups: (a) o-terphenyl and m-xylene, (b) N-butyl methacrylate, and (c) N,N-dimethylpropionamide and N,N-diethylformamide to represent the weak, moderate, and strong interactions with benzene. The enthalpies of mixing, ΔHmix, for the benzene mixtures are measured to show positive or negative signs, with which the validity of the extrapolations of the glass transition temperature Tg to the benzene-rich regions is examined. The extrapolations for the Tg data in the mixtures are found to converge around the point of 142 K, producing Tg of pure benzene. The fragility m of benzene is also evaluated by extrapolating the results of the mixtures, and a fragility m ∼ 80 is yielded. The obtained Tg and m values for benzene allow for the construction of the activation plot in the deeply supercooled region. The poor glass formability of benzene is found to result from the high melting point, which in turn leads to low viscosity in the supercooled liquid.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2015
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    AIP Publishing ; 2013
    In:  The Journal of Chemical Physics Vol. 139, No. 16 ( 2013-10-28)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 139, No. 16 ( 2013-10-28)
    Abstract: The dielectric relaxation of two long-chain glass forming monohydroxy alcohols, 2-butyl-1-octanol and 2-hexyl-1-decanol, is studied at low temperature. Remarkable broadening from the pure Debye relaxation is identified for the slowest dynamics, differing from the dielectric spectra of short-chain alcohols. The broadening of the Debye-like relaxation in the two liquids develops as temperature increases, and the approaching of the Debye-like and structural relaxation widths is shown. Similar results are observed in the dielectric spectra of dilute 2-ethyl-1-hexanol in either 2-hexyl-1-decanol or squalane. The results of the liquids and mixtures reveal a correlation between the broadening and the Debye-like relaxation strength. Molecular associations in monohydroxy alcohols are discussed with the modification of the Debye relaxation.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2013
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 141, No. 10 ( 2014-09-14)
    Abstract: The glass transition and relaxation dynamics in the binary mixtures of a Debye liquid, N-ethylacetamide, with water, monoalcohol, and amine are studied by calorimetric and dielectric measurements in the highly viscous regimes near the glass transition. Calorimetric measurements show the glass transition temperature in the N-ethylacetamide–water mixtures is remarkably enhanced as water is added as high as 70 mol. % before crystallization is detected. A similar increase is also observed in the N-ethylacetamide-rich mixtures with the non-Debye 1,2-propanediamine. However, the dielectric measurements show that the main relaxation in the N-ethylacetamide–water mixtures with water fraction up to 60 mol. % reproduces the dynamic characters of the mixtures constituted by two Debye liquids, N-ethylacetamide and 2-ethyl-1-butanol. The comparison of the calorimetric and dielectric features for the three mixing systems suggests that the Debye relaxation persists in the N-ethylacetamide–water mixtures within the experimentally studied compositions.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2014
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    AIP Publishing ; 2013
    In:  The Journal of Chemical Physics Vol. 139, No. 2 ( 2013-07-14)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 139, No. 2 ( 2013-07-14)
    Abstract: The dielectric relaxation of a substituted monohydroxy alcohol, 3-methylthio-1-hexanol, is studied in the highly viscous regime near the glass transition. The Debye relaxation is detected in the dielectric spectra showing the slowest and strongest relaxation dynamics. The calorimetric and dielectric measurements of the liquid and the mixtures with a Debye liquid (2-ethyl-1-hexanol) and a non-Debye liquid (2-ethylhexylamine) reproduce the dynamic characters of the relaxations in monohydroxy alcohols. The Debye relaxation strength and time of 3-methylthio-1-hexanol do not change much compared with 2-ethyl-1-hexanol, while the structural relaxation strength shows a considerable enhancement accompanied by an increase in relaxation time, indicative of a reduction in the dynamic separation between the Debye and structural relaxations. The experimental results allow for the examination of the structural models proposed for the Debye relaxation.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2013
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...