GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIP Publishing  (3)
  • 1
    In: Physics of Plasmas, AIP Publishing, Vol. 9, No. 9 ( 2002-09-01), p. 3919-3929
    Abstract: Spontaneous transitions from the low “L-mode” to high “H-mode” of tokamak plasma confinement, first observed during neutral beam heating experiments on ASDEX, are now routinely achieved in many tokamak experiments. The H-mode regime is attractive as it offers the possibility of enhanced confinement, and thus a route towards a more “compact” and cost-efficient fusion power-plant. Transition to H-mode is now routinely achievable in the Mega-Amp Spherical Tokamak (MAST) [A. C. Darke et al., Fusion Technology 1994 (Elsevier, Amsterdam, 1995), Vol. 1, p. 799] for both Ohmically and neutral beam injection (NBI) heated plasmas (PNBI∼0.5–1.7 MW). H-mode plasmas can be either center stack limited or X-point diverted, exhibiting regular Type III edge localized modes (ELMs). Global confinement in H-mode with low frequency ELMs is consistent with the international IPB(y,2) scaling and exceeds the scaling by a factor ∼1.5–2.0 for high performance discharges. Confinement degrades with increasing ELM frequency (which in turn scales with power and density) as for conventional tokamaks. Densities above the Greenwald limit (G∼1) have been achieved for plasma currents up to 0.8 MA using gas-fueling, and up to 0.9 MA using a low field side multi-pellet injector. High field side fueling, on the other hand, can be supplied via a gas-feed located at the center-column mid-plane, this technique having been found to dramatically enhance H-mode accessibility and quality. When combined with Connected Double Null plasma topology, a significant reduction in Ohmic L–H power threshold can be achieved; as a result, power threshold data are now in broad agreement with a number of the latest scaling law predictions. Following the transition to H-mode, power crossing the inner separatrix remains low, resulting in a high recycling scrape-off layer (compared with partial detachment in L-mode). To date, with NBI power limited to 1.7 MW, H-mode MAST plasmas have shown no evidence of having approached a beta limit (βN∼4.5li). High performance H-mode discharges are at sufficient poloidal beta (βp), however, to enable the first studies of the Neoclassical Tearing Mode, the MHD instability responsible for limiting the achievable beta in conventional tokamaks.
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2002
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Physics of Fluids B: Plasma Physics, AIP Publishing, Vol. 5, No. 7 ( 1993-07-01), p. 2481-2484
    Abstract: Low-aspect-ratio tokamaks offer both the economic advantage of smaller size and a number of physics advantages which are not available at conventional aspect ratio. The Small Tight Aspect Ratio Tokamak (START) [Fusion Technology 1990, edited by B. E. Keen, M. Huguet, and R. Hemsworth (North-Holland, Amsterdam, 1991), Vol. 1, p. 353] was conceived as a first substantial test of tokamak plasma behavior at low aspect ratio. It has achieved plasma currents up to 200 kA, peak densities of ∼2×1020 m−3 and central electron temperatures of ∼500 eV at an aspect ratio of 1.3–1.5. Central beta values of ∼13% have been measured and the volume-averaged beta 〈β〉 can approach the Troyon limit. Plasmas are naturally elongated (κ≲2.0) and are vertically stable without feedback control. Major disruptions have not been observed at low aspect ratios (A≤2.0).
    Type of Medium: Online Resource
    ISSN: 0899-8221
    Language: English
    Publisher: AIP Publishing
    Publication Date: 1993
    detail.hit.zdb_id: 2130787-8
    detail.hit.zdb_id: 648023-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Physics of Plasmas, AIP Publishing, Vol. 8, No. 5 ( 2001-05-01), p. 2101-2106
    Abstract: First physics results are presented from MAST (Mega-Amp Spherical Tokamak), one of the new generation of purpose built spherical tokamaks (STs) now commencing operation. Some of these results demonstrate, for the first time, the novel effects of low aspect ratio, for example, the enhancement of resistivity due to neo-classical effects. H-mode is achieved and the transition to H-mode is accompanied by a tenfold steepening of the edge density gradient which may enable the successful application of electron Bernstein wave heating in STs. Studies of halo currents show that these less than expected from conventional tokamak results, and measurements of divertor power loading confirm that most of the power flows to the outer strike points, easing the power handling on the inner points (a critical issue for STs).
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2001
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...