GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIP Publishing  (2)
Material
Publisher
  • AIP Publishing  (2)
Language
Years
  • 1
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 137, No. 3 ( 2012-07-21)
    Abstract: Size and structure effects on the homolytic water dissociation reaction mediated by Pt nanoparticles have been investigated through density functional theory calculations carried out on a series of cubooctahedral Ptn nanoparticles of increasing sizes (n = 13, 19, 38, 55, 79, and 140). Water adsorption energy is not significantly influenced by the nanoparticle size. However, activation energy barrier strongly depends on the particle size. In general, the activation energy barrier increases with nanoparticles size, varying from 0.30 eV for Pt19 to 0.70 eV for Pt140. For the largest particle the calculated barrier is very close to that predicted for water dissociation on Pt(111) (0.78 eV) even though the reaction mediated by the Pt nanoparticles involves adsorption sites not present on the extended surface.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2012
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    AIP Publishing ; 2013
    In:  The Journal of Chemical Physics Vol. 138, No. 7 ( 2013-02-21)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 138, No. 7 ( 2013-02-21)
    Abstract: The NO dissociation on a series of doped gold surfaces (type TMn@Au(111) or TMn@Au(110), with TMn = Ni, Ir, Rh, or Ag and referring n to the number of dopant atoms per unit cell) was investigated through periodic density functional theory calculations. Generally, doping of Au(111) and Au(110) matrices was found to strengthen the interaction with NO species, with the exception of Ag, and was found to increase the energy barrier for dissociation, with the exception of Ni on Au(111). The calculations suggest that the NO dissociation is only possible in the case of the Ir@Au(110) bimetallic surface but only at high temperatures. The increase of the contents of Ir on Au(110) was found to improve significantly the catalytic activity of gold towards the NO dissociation (Eact = ∼1 eV). Nevertheless, this energy barrier is almost the double of that calculated for NO dissociation on pure Ir(110). However, mixing the two most interesting dopant atoms resulted in a catalyst model of the type Ir@Ni(110) that was found to decrease the energy barrier to values close to those calculated for pure Ir surfaces, i.e., ∼0.4 eV, and at the same time the dissociation reaction became mildly exothermic.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2013
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...