GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: AIP Advances, AIP Publishing, Vol. 5, No. 12 ( 2015-12-01)
    Abstract: Measurements of electrical conductivity, electron work function, carrier mobility of holes and the diffusion length of excitons were performed on samples of conjugated polymers relevant to polymer solar cells. A state of the art fluorinated benzothiadiazole based conjugated copolymer (PBDTTHD − DTBTff) was studied and benchmarked against the reference polymer poly-3-hexylthiophene (P3HT). We employed, respectively, four electrode conductivity measurements, Kelvin probe work function measurements, carrier mobility using charge extraction by linearly increasing voltage (CELIV) measurements and diffusion length determinaton using surface photovoltage measurements.
    Type of Medium: Online Resource
    ISSN: 2158-3226
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2015
    detail.hit.zdb_id: 2583909-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Review of Scientific Instruments, AIP Publishing, Vol. 89, No. 1 ( 2018-01-01)
    Abstract: We report on a Paul-trap system with large access angles that allows positioning of fully isolated micrometer-scale particles with micrometer precision as targets in high-intensity laser-plasma interactions. This paper summarizes theoretical and experimental concepts of the apparatus as well as supporting measurements that were performed for the trapping process of single particles.
    Type of Medium: Online Resource
    ISSN: 0034-6748 , 1089-7623
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2018
    detail.hit.zdb_id: 209865-9
    detail.hit.zdb_id: 1472905-2
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    AIP Publishing ; 1963
    In:  The Physics of Fluids Vol. 6, No. 8 ( 1963-08-01), p. 1192-1193
    In: The Physics of Fluids, AIP Publishing, Vol. 6, No. 8 ( 1963-08-01), p. 1192-1193
    Type of Medium: Online Resource
    ISSN: 0031-9171
    Language: English
    Publisher: AIP Publishing
    Publication Date: 1963
    detail.hit.zdb_id: 1472743-2
    detail.hit.zdb_id: 241528-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    AIP Publishing ; 2014
    In:  Journal of Applied Physics Vol. 116, No. 22 ( 2014-12-14)
    In: Journal of Applied Physics, AIP Publishing, Vol. 116, No. 22 ( 2014-12-14)
    Abstract: Hybrid diamond-organic interfaces are considered attractive for diverse applications ranging from electronics and energy conversion to medicine. Here we use time-resolved and time-integrated photoluminescence spectroscopy in visible spectral range (380–700 nm) to study electronic processes in H-terminated nanocrystalline diamond films (NCD) with 150 nm thin, electrochemically deposited polypyrrole (PPy) layer. We observe changes in dynamics of NCD photoluminescence as well as in its time-integrated spectra after polymer deposition. The effect is reversible. We propose a model where the PPy layer on the NCD surface promotes spatial separation of photo-generated charge carriers both in non-diamond carbon phase and in bulk diamond. By comparing different NCD thicknesses we show that the effect goes as much as 200 nm deep inside the NCD film.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2014
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    AIP Publishing ; 1967
    In:  The Physics of Fluids Vol. 10, No. 9 ( 1967-09-01), p. S255-S258
    In: The Physics of Fluids, AIP Publishing, Vol. 10, No. 9 ( 1967-09-01), p. S255-S258
    Abstract: Mean wind velocity and temperature profiles were measured in a wind-tunnel boundary layer (approximately 1m thick) made thermally stable or unstable by flow over a horizontal flat plate (29 m long, and 2 m wide) which was either cooled or heated along the downstream 13 m. Laboratory and field mean velocity profiles were found to be similar as were the mean temperature profiles when compared on the basis of a log-plus-linear relationship. For thermally unstable flows, the dimensionless wind shear is approximated by the form (1+z/L)n with n = 32. The transition from forced- to free-convection flow for unstable stratification was gradual and occurred in a Richardson number range predicted by Gurvich and Priestley. Both laboratory and field data for ζ & lt; 0 are best represented by a function of the form Ri = −(1−S2/3/αS).
    Type of Medium: Online Resource
    ISSN: 0031-9171
    Language: English
    Publisher: AIP Publishing
    Publication Date: 1967
    detail.hit.zdb_id: 1472743-2
    detail.hit.zdb_id: 241528-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Review of Scientific Instruments, AIP Publishing, Vol. 90, No. 8 ( 2019-08-01)
    Abstract: Measuring the size of micron-scale particles plays a central role in the biological sciences and in a wide range of industrial processes. A variety of size parameters, such as particle diameter, volume, and mass, can be measured using electrical and optical techniques. Suspended microchannel resonators (SMRs) are microfluidic devices that directly measure particle mass by detecting a shift in resonance frequency as particles flow through a resonating microcantilever beam. While these devices offer high precision for sizing particles by mass, throughput is fundamentally limited by the small dimensions of the resonator and the limited bandwidth with which changes in resonance frequency can be tracked. Here, we introduce two complementary technical advancements that vastly increase the throughput of SMRs. First, we describe a deconvolution-based approach for extracting mass measurements from resonance frequency data, which allows an SMR to accurately measure a particle’s mass approximately 16-fold faster than previously possible, increasing throughput from 120 particles/min to 2000 particles/min for our devices. Second, we describe the design and operation of new devices containing up to 16 SMRs connected fluidically in parallel and operated simultaneously on the same chip, increasing throughput to approximately 6800 particles/min without significantly degrading precision. Finally, we estimate that future systems designed to combine both of these techniques could increase throughput by nearly 200-fold compared to previously described SMR devices, with throughput potentially as high as 24 000 particles/min. We envision that increasing the throughput of SMRs will broaden the range of applications for which mass-based particle sizing can be employed.
    Type of Medium: Online Resource
    ISSN: 0034-6748 , 1089-7623
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2019
    detail.hit.zdb_id: 209865-9
    detail.hit.zdb_id: 1472905-2
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    AIP Publishing ; 2017
    In:  Review of Scientific Instruments Vol. 88, No. 6 ( 2017-06-01)
    In: Review of Scientific Instruments, AIP Publishing, Vol. 88, No. 6 ( 2017-06-01)
    Abstract: For the synthesis of high-quality thin films, ion-beam assisted deposition (IBAD) is a frequently used technique providing precise control over several substantial film properties. IBAD typically relies on the use of a broad-beam ion source. Such ion sources suffer from the limitation that they deliver a blend of ions with different ion masses, each of them possessing a certain distribution of kinetic energy. In this paper, a compact experimental setup is presented that enables the separate control of ion mass and ion kinetic energy in the region of hyperthermal energies (few 1 eV – few 100 eV). This ion energy region is of increasing interest not only for ion-assisted film growth but also for the wide field of preparative mass spectrometry. The setup consists of a constricted glow-discharge plasma beam source and a tailor-made, compact quadrupole system equipped with entry and exit ion optics. It is demonstrated that the separation of monoatomic and polyatomic nitrogen ions (N+ and N2+) is accomplished. For both ion species, the kinetic energy is shown to be selectable in the region of hyperthermal energies. At the sample position, ion current densities are found to be in the order of 1 μA/cm2 and the full width at half maximum of the ion beam profile is in the order of 10 mm. Thus, the requirements for homogeneous deposition processes in sufficiently short periods of time are fulfilled. Finally, employing the described setup, for the first time in practice epitaxial GaN films were deposited. This opens up the opportunity to fundamentally study the influence of the simultaneous irradiation with hyperthermal ions on the thin film growth in IBAD processes and to increase the flexibility of the technique.
    Type of Medium: Online Resource
    ISSN: 0034-6748 , 1089-7623
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2017
    detail.hit.zdb_id: 209865-9
    detail.hit.zdb_id: 1472905-2
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...