GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIP Publishing  (6)
Material
Publisher
  • AIP Publishing  (6)
Language
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    AIP Publishing ; 2004
    In:  The Journal of Chemical Physics Vol. 120, No. 13 ( 2004-04-01), p. 6222-6228
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 120, No. 13 ( 2004-04-01), p. 6222-6228
    Abstract: The Cs symmetry reaction of the H2 molecule on a Pt4 (111) clusters, has been studied using ab initio multiconfiguration self-consistent field plus extensive multireference configuration interaction variational and perturbative calculations. The H2 interaction by the vertex and by the base of a tetrahedral Pt4 cluster were studied in ground and excited triplet and singlet states (closed and open shells), where the reaction curves are obtained through many avoided crossings. The Pt4 cluster captures and activates the hydrogen molecule; it shows a similar behavior compared with other Ptn (n=1,2,3) systems. The Pt4 cluster in their lowest five open and closed shell electronic states: B23, B21, A11 3A1, A11, respectively, may capture and dissociate the H2 molecule without activation barriers for the hydrogen molecule vertex approach. For the threefolded site reaction, i.e., by the base, the situation is different, the hydrogen adsorption presents some barriers. The potential energy minima occur outside and inside the cluster, with strong activation of the H–H bond. In all cases studied, the Pt4 cluster does not absorb the hydrogen molecule.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2004
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Applied Physics, AIP Publishing, Vol. 120, No. 2 ( 2016-07-14)
    Abstract: Low temperature thermal to electrical energy converters have the potential to provide a route for recovering waste energy. In this paper, we propose a new configuration of a thermal harvester that uses a naturally driven thermal oscillator free of mechanical motion and operates between a hot heat source and a cold heat sink. The system exploits a heat induced liquid-vapour transition of a working fluid as a primary driver for a pyroelectric generator. The two-phase instability of a fluid in a closed looped capillary channel of an oscillating heat pipe (OHP) creates pressure differences which lead to local high frequency temperature oscillations in the range of 0.1–5 K. Such temperature changes are suitable for pyroelectric thermal to electrical energy conversion, where the pyroelectric generator is attached to the adiabatic wall of the OHP, thereby absorbing thermal energy from the passing fluid. This new pyroelectric-oscillating heat pipe (POHP) assembly of a low temperature generator continuously operates across a spatial heat source temperature of 55 °C and a heat sink temperature of 25 °C, and enables waste heat recovery and thermal energy harvesting from small temperature gradients at low temperatures. Our electrical measurements with lead zirconate titanate (PZT) show an open circuit voltage of 0.4 V (AC) and with lead magnesium niobate–lead titanate (PMN-PT) an open circuit voltage of 0.8 V (AC) at a frequency of 0.45 Hz, with an energy density of 95 pJ cm−3 for PMN-PT. Our novel POHP device therefore has the capability to convert small quantities of thermal energy into more desirable electricity in the nW to mW range and provides an alternative to currently used batteries or centralised energy generation.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2016
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 152, No. 5 ( 2020-02-07)
    Abstract: Core-excitation of water ice releases many different molecules and ions in the gas phase. Studying these desorbed species and the underlying desorption mechanisms can provide useful information on the effects of x-ray irradiation in ice. We report a detailed study of the x-ray induced desorption of a number of neutral, cationic, and anionic species from amorphous solid water. We discuss the desorption mechanisms and the relative contributions of Auger and secondary electrons (x-ray induced electron stimulated desorption) and initial excitation (direct desorption) as well as the role of photochemistry. Anions are shown to desorb not just through processes linked with secondary electrons but also through direct dissociation of the core-excited molecule. The desorption spectra of oxygen ions (O+, OH+, H2O+, O−, and OH−) give a new perspective on their previously reported very low desorption yields for most types of irradiations of water, showing that they mostly originate from the dissociation of photoproducts such as H2O2.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2020
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Applied Physics Letters, AIP Publishing, Vol. 105, No. 19 ( 2014-11-10)
    Abstract: Precession electron diffraction is an efficient technique to measure strain in nanostructures by precessing the electron beam, while maintaining a few nanometre probe size. Here, we show that an advanced diffraction pattern treatment allows reproducible and precise strain measurements to be obtained using a default 512 × 512 DigiSTAR off-axis camera both in advanced or non-corrected transmission electron microscopes. This treatment consists in both projective geometry correction of diffraction pattern distortions and strain Delaunay triangulation based analysis. Precision in the strain measurement is improved and reached 2.7 × 10−4 with a probe size approaching 4.2 nm in diameter. This method is applied to the study of the strain state in InGaAs quantum-well (QW) devices elaborated on Si substrate. Results show that the GaAs/Si mismatch does not induce in-plane strain fluctuations in the InGaAs QW region.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2014
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    AIP Publishing ; 2006
    In:  The Journal of Chemical Physics Vol. 124, No. 2 ( 2006-01-14)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 124, No. 2 ( 2006-01-14)
    Abstract: The adsorption of the H2 molecule on CsnPt(5−n) bcc (111) clusters for Cs∕Pt rates of 20%, 40%, and 80% is studied using ab initio multiconfigurational self-consistent field plus multireference configuration-interaction variational and perturbative calculations. The H2 interaction with the clusters is studied in ground and excited states with geometry optimization, where the hydrogen adsorption takes place by a Pt atom. These calculations are compared with those of H2 adsorption on Pt4. The most stable configurations of CsPt4 and Cs2Pt3 clusters (Cs∕Pt rates of 20% and 40%) are a doublet and a closed-shell singlet, respectively. Both clusters capture and activate the hydrogen molecule and their behaviors resemble Pt4. The H2 capture distances are, respectively, similar and smaller than Pt4 capture distances, while the H–H bond dissociation distances are similar and bigger than those of Pt4; however, none of them presents activation barriers. The most stable Cs4Pt cluster (Cs∕Pt rate of 80%) is also a closed-shell singlet; it also captures and activates the hydrogen molecule and shows a different behavior as compared with CsPt4, Cs2Pt3, and Pt4 clusters. The capture distance is quite smaller and is obtained after surmounting an activation barrier. For all clusters studied here, no hydrogen absorption was observed, only the adsorption of H2.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2006
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Applied Physics, AIP Publishing, Vol. 111, No. 5 ( 2012-03-01)
    Abstract: We present a detailed analysis of the impact of high temperature annealing on the chemical and electronic properties of TiN/HfSixOyNz/SiOxNy/Si gate stacks, where an ultra-thin LaOx capping layer (0.4–1 nm) is inserted between the TiN metal gate and the HfSixOyNz dielectric. From our experimental results, we demonstrate that La atoms diffuse through the entire nitrided hafnium silicate and reach the SiOxNy interfacial layer to form a La-silicate. In addition, hard x-ray photoelectron spectroscopy analysis highlights the band alignments’ shift of the gate stacks, which is well related to Vfb shifts based on an interfacial dipole and/or fixed charges model. Finally, this study reveals that the Vfb roll-off phenomenon is amplified with an increasing amount of La atoms near the substrate interface. A correlation between LaOx thickness and interface trap density (Dit) is observed, and a mechanism explaining the roll-off behavior is proposed.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2012
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...