GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIP Publishing  (3)
  • Physics  (3)
Material
Publisher
  • AIP Publishing  (3)
Language
Years
Subjects(RVK)
  • Physics  (3)
RVK
  • 1
    In: Applied Physics Letters, AIP Publishing, Vol. 117, No. 15 ( 2020-10-12)
    Abstract: The excitonic effects in two-dimensional transition metal dichalcogenides and their heterostructures have been extensively investigated. Significantly, the moiré excitons, induced by a moiré superlattice in a twisted heterostructure, have triggered tremendous attention, demonstrating the practicability of artificial excitonic crystals. Besides, recent works have shown that the excitonic states in homostructures also exhibit novel properties worthy of further development. Here, we present a tear-and-stack technique for fabricating a regular or a twisted homostructure. Such a strategy was utilized to reassemble a monolayer WSe2 into a twisted homostructure, and various excitons from this structure have been identified in the photoluminescence spectra. Interestingly, the unusual equidistant splitting was first observed in the defect-bound excitons. It is believed that this phenomenon is attributed to the various defect states and the local stacking patterns. This interpretation is supported by theoretical calculations, which show the dependence of the energy band structure on different defect states and local stacking patterns. These unconventional defect-bound excitons are key building blocks in the research of homostructures that highlight the feasibility of artificially manipulating local excitons for practical applications.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2020
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Applied Physics Letters, AIP Publishing, Vol. 109, No. 16 ( 2016-10-17)
    Abstract: We report the tunneling electroresistance effect (TER) in a Pt/BaTiO3(BTO)/Nb:SrTiO3 (n-STO) ferroelectric tunnel junction (FTJ). Using transmission electron microscopy, X-ray photoelectron spectroscopy, and piezoresponse force microscopy, we find that the thick BaTiO3 (5 nm) film is epitaxial and of high quality. A large ON/OFF resistance ratio of more than 104% at room temperature is observed. Our experimental results as well as theoretical modeling reveal that the depletion region near the BTO/n-STO interface can be electrically modulated via ferroelectric polarization, which plays a key role for the TER effect. Moreover, both long retention and high switching reproducibility are observed in the Pt/BTO/n-STO FTJ. Our results provide some fundamental understandings of the TER mechanism in the FTJs using a semiconductor electrode and will be useful for FTJ-based nonvolatile devices design.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2016
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Applied Physics Letters, AIP Publishing, Vol. 122, No. 26 ( 2023-06-26)
    Abstract: Ir-CoFeB-based synthetic antiferromagnets (SAFs) are potential candidates as the free layer of the next-generation magnetic tunnel junctions (MTJs) for high speed and density memories due to their perpendicular magnetic anisotropy and strong interlayer exchange coupling. However, the field-free spin–orbit torque (SOT) switching of Ir-CoFeB-based SAFs has rarely been reported, especially in the Co/Ir/CoFeB system with high anti-interference capability and being readily integrated with MTJs. In this paper, SOT-induced magnetization switching and SOT efficiency in Co/Ir/CoFeB SAFs with perpendicular anisotropy and tunable exchange coupling are systemically investigated. A full field-free switching of perpendicular Co/Ir/CoFeB SAFs is realized by depositing them onto crystal miscut Al2O3 substrates, which induce a tilted magnetic anisotropy. Furthermore, by introducing crystalline MgO or amorphous HfO2/SiO2 as the seed layers, the source of the tilted magnetic anisotropy was proved to be from the transverse asymmetry caused by the crystal miscut. Moreover, the crystal miscut enhances the SOT efficiency. The findings provide an approach to reliable field-free switching and high SOT efficiency of Ir-CoFeB-based SAFs for memories as well as logics with low power, fast speed, and high density.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...