GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (2)
Document type
Publisher
Years
  • 1
    Publication Date: 2019-02-01
    Description: The rising temperature of the world’s oceans is affecting coral reef ecosystems by increasing the frequency and severity of bleaching and mortality events. The susceptibility of corals to temperature stress varies on local and regional scales. Insights into potential controlling parameters are hampered by a lack of long term in situ data in most coral reef environments and sea surface temperature (SST) products often do not resolve reef-scale variations. Here we use 42 years (1970–2012) of coral Sr/Ca data to reconstruct seasonal- to decadal-scale SST variations in two adjacent but distinct reef environments at Little Cayman, Cayman Islands. Our results indicate that two massive Diploria strigosa corals growing in the lagoon and in the fore reef responded differently to past warming events. Coral Sr/Ca data from the shallow lagoon successfully record high summer temperatures confirmed by in situ observations (〉338C). Surprisingly, coral Sr/Ca from the deeper fore reef is strongly affected by thermal stress events, although seasonal temperature extremes and mean SSTs at this site are reduced compared to the lagoon. The shallow lagoon coral showed decadal variations in Sr/Ca, supposedly related to the modulation of lagoonal temperature through varying tidal water exchange, influenced by the 18.6 year lunar nodal cycle. Our results show that reef-scale SST variability can be much larger than suggested by satellite SST measurements. Thus, using coral SST proxy records from different reef zones combined with in situ observations will improve conservation programs that are developed to monitor and predict potential thermal stress on coral reefs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-08
    Description: Atlantic Warm Pool (AWP) climate variability is subject to multiple influences of remote and local forcing. However, shortage of observational data before the mid‐20th century and of long‐term sea surface temperature (SST) and climate records has hampered the detection and investigation of decadal‐ and longer‐scale variability. We present new seasonally resolved 125‐year records of coral δ18O and Sr/Ca variations in the Central Caribbean Sea (Little Cayman, Cayman Islands; Diploria strigosa). Both geochemical proxies show decreasing long‐term trends, indicating long‐term warming. Sr/Ca indicates much stronger regional warming than large‐scale grid‐SST data, while δ18O tracks large‐scale SST changes in the AWP. Seawater δ18O variations are reconstructed, indicating a drying trend over the past century. High spatial correlation between coral δ18O and SST in the region of the Loop Current and Gulf Stream system suggests that Little Cayman is a sensitive location for detecting past large‐scale temperature variability beyond the central Caribbean region. More specifically, our δ18O data tracks changes in North Atlantic Oscillation (NAO) variability on decadal and multidecadal time scales providing insights into the temporal and spatial nonstationarity of the NAO. A combination of our δ18O record with two coral records from different Caribbean sites reveals high spatial correspondence between coral δ18O and SST variability in the North Atlantic subtropical gyre, where few instrumental measurements and proxies are available prior to the 20th century. Our results clearly demonstrate the potential of combining proxy data to provide information from sparsely sampled areas, helping to reduce uncertainty in model‐based projections.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...