GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Keywords: Hochschulschrift ; Aminosäuren ; Meeressediment ; Norwegensee
    Type of Medium: Online Resource
    Pages: Online-Ressource (220 Seiten = 70 MB) , Graphen, Karten
    Language: German
    Note: Zusammenfassung in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Seismik
    Type of Medium: Book
    Pages: 114 S. , 4°
    Series Statement: Mitteilungen der Seismos-Gesellschaft 2
    Language: German
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Naturwissenschaften 34 (1947), S. 257-262 
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Naturwissenschaften 34 (1947), S. 289-295 
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Gauthier-Villars
    In:  Oceanologica Acta, 17 (6). pp. 621-631.
    Publication Date: 2018-06-15
    Description: Dissolved free amino acids (DFAA) and dissolved combined amino acids (DCAA) were determined in the porewater of sediment cores from the Norwegian-Greenland Sea (water depth from 1000 to 3300 m). Concentrations in the sediment column were generally found to decrease with depth. The amino acid composition of DFAA and DCAA was remarkably constant. The relative contributions of acidic amino acids decrease with depth, however. Composition patterns for samples for water depth 1000-2000 m and for deep-sea samples (water depth 〉 3000 m) show characteristic differences. Some secondary concentration maxima several centimeters below the sediment-water interface are found, probably related to the bioturbation activity of benthic macrofauna
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 24 . pp. 1763-1766.
    Publication Date: 2018-02-13
    Description: The partial pressure of CO2 (pCO2) was measured during the 1995 South-West Monsoon in the Arabian Sea. The Arabian Sea was characterized throughout by a moderate supersaturation of 12–30 µatm. The stable atmospheric pCO2 level was around 345 µatm. An extreme supersaturation was found in areas of coastal upwelling off the Omani coast with pCO2 peak values in surface waters of 750 µatm. Such two-fold saturation (218%) is rarely found elsewhere in open ocean environments. We also encountered cold upwelled water 300 nm off the Omani coast in the region of Ekman pumping, which was also characterized by a strongly elevated seawater pCO2 of up to 525 µatm. Due to the strong monsoonal wind forcing the Arabian Sea as a whole and the areas of upwelling in particular represent a significant source of atmospheric CO2 with flux densities from around 2 mmol m−2 d−1 in the open ocean to 119 mmol m−2 d−1 in coastal upwelling. Local air masses passing the area of coastal upwelling showed increasing CO2 concentrations, which are consistent with such strong emissions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 103 (C9). pp. 18681-18689.
    Publication Date: 2018-04-30
    Description: The penetration of anthropogenic or “excess” CO2 into the North Atlantic Ocean was studied along WOCE‐WHP section A2 from 49°N/11°W to 43°N/49°W using hydrographic data obtained during the METEOR cruise 30–2 in October/November 1994. A backcalculation technique based on measurements of temperature, salinity, oxygen, alkalinity, and total dissolved inorganic carbon was applied to identify the excess CO2. Everywhere along the transect surface water contained almost its full component of anthropogenic CO2 ( ∼62 μmol kg−1). Furthermore, anthropogenic CO2 has penetrated through the entire water column in the western basin of the North Atlantic Ocean. Even in the deepest waters (5000 m) of the western basin a mean value of 10.4 μmol kg−1 excess CO2 was calculated. The maximum penetration depth of excess CO2 in the eastern basin of the North Atlantic Ocean was ∼3500 m with values falling below 5 μmol kg−1 in greater depths. These results compare well with distributions of carbontetrachloride. They are also in agreement with the current understanding of the role of the “global ocean conveyor belt” for the uptake of anthropogenic CO2 into the deep ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory
    In:  Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN, U.S.A., 175 pp.
    Publication Date: 2020-03-27
    Description: Measurements of the fugacity of carbon dioxide (fCO2) in surface seawater are an important part of studies of the global carbon cycle and its anthropogenic perturbation. An important step toward the thorough interpretation of the vast amount of available fCO2 data is the establishment of a database system that would make sure measurements more widely available for use in understanding the basin- and global-scale distribution of fCO2 and its influence on the oceanic uptake of anthropogenic CO2. Such an effort, however, is based on knowledge of data sets from different laboratories. Currently, however, there is not much known about this subject.
    Type: Book , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-10-20
    Type: Thesis , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-08-22
    Description: Data on the carbonate system of the Northwestern Indian Ocean obtained on a cruise of F.S. Meteor during SW monsoon in July/August 1995 were compared with those of George et al. [George, M.D., Kumar, M.D., Naqvi, S.W.A., Banerjee, S., Narvekar, P.V., de Sousa, S.N., Jayakumar, D.A., 1994. A study of the carbon dioxide system in the northern Indian Ocean during premonsoon. Mar. Chem. 47, 243–254] collected during intermonsoon. In general, deep water values agreed well between the two expeditions. Surface waters, however, showed a substantial increase in dissolved inorganic carbon (CT) in the coastal regions due to strong upwelling in the SW monsoon. This was also accompanied by very high CO2 partial pressures in surface waters. The north–south gradients in vertical profiles of the measured parameters in the Arabian Sea are discussed by comparing profiles from the oligotrophic equatorial region with those from the highly productive central Arabian Sea. The effect of denitrification on regenerated CT and AT is minor, with contributions of 〈9 and 〈8 μmol kg−1, respectively, to the total amount regenerated also utilizing oxygen. The dissolution of biogenic carbonates is discussed; different approaches to define the depth, where the dissolution starts (lysocline(s), carbonate critical depth (CCrD)), are compared together with the calculation of saturation depth from carbonate concentrations. It is shown, that small differences in measured CT and AT (found between our data and those measured during GEOSECS) and different calculation approaches to the CO2 system (different dissociation constants for species involved and taking into account phosphate and silicate concentrations) can produce pronounced differences in the calculated saturation depths. However, CT and AT data suggest substantial dissolution of biogenic carbonate in the water column even above the calcite lysocline, irrespective of the procedures followed to calculate this horizon.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...