GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (1)
  • SPRINGER  (1)
  • 1
    Publication Date: 2024-02-07
    Description: Marine nitrogen (N2) fixation supports significant primary productivity in the global ocean. However, in one of the most productive regions of the world ocean, the northern Humboldt Upwelling System (HUS), the magnitude and spatial distribution of this process remains poorly characterized. This study presents a spatially resolved dataset of N2 fixation rates across six coastal transects of the northern HUS off Peru (8°S – 16°S) during austral summer. N2 fixation rates were detected throughout the waters column including within the OMZ between 12°S and 16°S. N2 fixation rates were highest where the subsurface Oxygen Minimum Zone (OMZ, O2 〈20 µmol L-1) was most intense and estimated nitrogen (N) loss was highest. There, rates were measured throughout the water column. Hence the vertical and spatial distribution of rates indicates colocation of N2 fixation with N loss in the coastal productive waters of the northern HUS. Despite high phosphate and total dissolvable iron (TdFe) concentrations throughout the study area, N2 fixation was still generally low (1.19 ± 3.81 nmol L-1 d-1) and its distribution could not be directly explained by these two factors. Our results suggest that the distribution was likely influenced by a complex interplay of environmental factors including phytoplankton biomass and organic matter availability, and potentially iron, or other trace metal (co)-limitation of both N2 fixation and primary production. In general, our results support previous conclusions that N2 fixation in the northern HUS plays a minor role as a source of new N and to replenish the regional N loss. Key Points: A north-to-south pattern in N2 fixation rates was observed implying increased N turnover between 12°S and 16°S where N loss was pronounced Highest N2 fixation rates were measured in coastal productive waters above and within the OMZ, showing no clear relationship with Fe or P The magnitude of N2 fixation was low compared to predictions, estimated to account for ∼0.3% of primary production and 〈2% of local N loss
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-18
    Description: The sea ice cover of the Arctic Ocean has changed dramatically in the last decades, and the resulting consequences for the sea-ice-associated ecosystem remain difficult to assess. Algal aggregates underneath sea ice are of great importance for the ice-associated ecosystem and the pelagic-benthic coupling. However, the frequency and distribution of their occurrence is not well quantified. During the IceArc expedition (ARK-27/3) of RV Polarstern in late summer 2012, we observed different types of algal aggregates floating underneath various ice types in the Central Arctic basins. We investigated the spatial distribution of ice algal aggregates and quantified their biomass, using under-ice image surveys obtained by an upward-looking camera on a remotely operated vehicle. On basin scale, filamentous aggregates of Melosira arctica are more frequently found in the inner part of the Central Arctic pack ice, while rounded aggregates mainly formed by pennate diatoms are found closer to the ice edge, under melting sea ice. On the scale of an ice floe, the distribution of algal aggregates in late summer is mainly regulated by the topography of the ice underside, with aggregates accumulating in dome-shaped structures and at the edges of pressure ridges. The average biomass of the aggregates from our sites and season was 0.1–6.0 mg C m−2. However, depending on the approach used, differences in orders of magnitude for biomass estimates may occur. This highlights the difficulties of upscaling observations and comparing results from surveys conducted using different methods or on different spatial scales.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...