GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (7)
  • PANGAEA  (6)
Document type
Keywords
Publisher
  • 1
    Publication Date: 2023-12-12
    Description: Size segregated aerosol samples were collected during the Very short lived bromine compounds in the ocean and their transport pathways into the stratosphere (TransBrom) cruise (FS Sonne, SO202) during 9 - 25 October 2009 in the western Pacific Ocean (~141 E - 146 E, 20 S – 43 N). The samples were collected by Christian Müller, Sebastian Wache and Arne Lanatowitz of GEOMAR, Kiel, Germany. The aerosol sampler was situated on the roof of the ship's wheelhouse. Samples were collected using a Sierra-type cascade impactor to separate the aerosol particles at an aerodynamic diameter cutoff of 1 µm. Collection time for the samples varied between 20.3 and 26.8 hours. Samples were extracted with ultrapure water and the major ions Na+, NH4+, Mg2+, K+, Ca2+, Cl-, NO3-, SO42-, oxalate, Br- and methanesulfonate were determined by ion chromatography (IC). Total soluble iodine (TSI) was determined by inductively coupled plasma - mass spectrometry (ICP-MS) and iodide (I-) and iodate (IO3-) were determined by IC-ICP-MS. The dataset contains the atmospheric concentrations of all measured soluble major ions (in nmol/m³) and iodine species (in pmol/m³).
    Keywords: Air volume; Ammonium, soluble; Ammonium, soluble, standard deviation; Bromide, soluble; Bromide, soluble, standard deviation; Calcium, soluble; Calcium, soluble, standard deviation; Chloride, soluble; Chloride, soluble, standard deviation; Date/Time of event; Date/Time of event 2; Elemental species separation and detection (IC-ICP-MS); Event label; high-volume aerosol collection; High volume aerosol collector (Graseby-Anderson type); Inductively coupled plasma - mass spectrometry (ICP-MS); Iodate, soluble; Iodate, soluble, standard deviation; Iodide, soluble; Iodide, soluble, standard deviation; Iodine, soluble; Iodine, soluble, standard deviation; Ion chromatography; Latitude of event; Latitude of event 2; Longitude of event; Longitude of event 2; Magnesium, soluble; Magnesium, soluble, standard deviation; Methane sulfonic acid; Methane sulfonic acid, standard deviation; Nitrate, soluble; Nitrate, soluble, standard deviation; Oxalate, soluble; Oxalate, soluble, standard deviation; Potassium, soluble; Potassium, soluble, standard deviation; Sample code/label; Size fraction; size-segregated aerosol particles; SO202/2; SO202/2_I01; SO202/2_I02; SO202/2_I03; SO202/2_I04; SO202/2_I05; SO202/2_I06; SO202/2_I07; SO202/2_I08; SO202/2_I09; SO202/2_I10; SO202/2_I11; SO202/2_I12; SO202/2_I13; Sodium, soluble; Sodium, soluble, standard deviation; Sonne; Sulfate, soluble; Sulfate, soluble, standard deviation; TransBrom; Western Pacific Ocean
    Type: Dataset
    Format: text/tab-separated-values, 776 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-06-25
    Description: Size segregated aerosol samples were collected during the M138 cruise (FS Meteor) during 6 June - 1 July 2017 in the eastern Pacific Ocean (~86 W - 76 W, 16 S – 5 N). The samples were collected by Hermann Bange of GEOMAR, Kiel, Germany. The aerosol sampler was situated on the roof of the ship's wheelhouse and its operation was controlled by an automatic wind sector controller to prevent contamination from the ship's stack. Samples were collected using a Sierra-type cascade impactor to separate the aerosol particles at an aerodynamic diameter cutoff of 1 µm. Collection time for these samples varied between 14.3 and 65.2 hours. Samples were extracted with ultrapure water and the major ions Na+, NH4+, Mg2+, K+, Ca2+, Cl-, NO3-, SO42-, oxalate, Br- and methanesulfonate were determined by ion chromatography (IC). Total soluble iodine (TSI) was determined by inductively coupled plasma - mass spectrometry (ICP-MS) and iodide (I-) and iodate (IO3-) were determined by IC-ICP-MS. Analysis work was performed by Andrew Smith of University of East Anglia, Norwich, UK. The dataset contains the atmospheric concentrations of all measured soluble major ions (in nmol/m³)) and iodine species (in in pmol/m³). The data are reported in “Soluble iodine speciation in marine aerosols across the Indian and Pacific Ocean basins”, E. Droste et al., Frontiers in Marine Science, in preparation, (2021).
    Keywords: Air volume; Ammonium, soluble; Ammonium, soluble, standard deviation; Bromide, soluble; Calcium, soluble; Calcium, soluble, standard deviation; Chloride, soluble; Chloride, soluble, standard deviation; Date/Time of event; Date/Time of event 2; East Pacific Ocean; Elemental species separation and detection (IC-ICP-MS); Event label; high-volume aerosol collection; High volume aerosol collector (Graseby-Anderson type); Inductively coupled plasma - mass spectrometry (ICP-MS); Iodate, soluble; Iodate, soluble, standard deviation; Iodide, soluble; Iodide, soluble, standard deviation; Iodine, soluble; Iodine, soluble, standard deviation; Ion chromatography; Latitude of event; Latitude of event 2; Longitude of event; Longitude of event 2; M138; M138_MI04; M138_MI05; M138_MI06; M138_MI07; M138_MI08; M138_MI09; M138_MI10; M138_MI11; M138_MI12; M138_MI13; M138_MI14; M138_MI15; Magnesium, soluble; Magnesium, soluble, standard deviation; Meteor (1986); Methane sulfonic acid; Methane sulfonic acid, standard deviation; Nitrate, soluble; Nitrate, soluble, standard deviation; Oxalate, soluble; Oxalate, soluble, standard deviation; Potassium, soluble; Potassium, soluble, standard deviation; Sample code/label; SFB754; Size fraction; size-segregated aerosol particles; Sodium, soluble; Sodium, soluble, standard deviation; Sulfate, soluble; Sulfate, soluble, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 664 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  IFM-GEOMAR Leibniz-Institute of Marine Sciences, Kiel University
    Publication Date: 2024-06-26
    Keywords: 23-10; AEROS; Aerosol sampler; Aluminium, soluble; Aluminium, standard deviation; Bromide; Bromide, standard deviation; Cadmium, soluble; Cadmium, standard deviation; Calcium; Calcium, standard deviation; Chloride, standard deviation; Chloride in air; Cobalt, soluble; Cobalt, standard deviation; Copper, soluble; Copper, standard deviation; Date/time end; Date/time start; Event label; Iron, soluble; Iron, standard deviation; LATITUDE; Latitude 2; Lead, soluble; Lead, standard deviation; LONGITUDE; Longitude 2; Magnesium; Magnesium, standard deviation; Manganese, soluble; Manganese, standard deviation; Nickel, soluble; Nickel, standard deviation; Nitrate; Nitrate, standard deviation; Oxalate; Oxalate, standard deviation; POS399/2; POS399/2_TM01; POS399/2_TM02; POS399/2_TM03; POS399/2_TM04; POS399/2_TM05; POS399/2_TM06; POS399/2_TM07; POS399/2_TM08; POS399/2_TM09; POS399/2_TM10; POS399/2_TM11; POS399/2_TM12; POS399/3; POS399/3_TM13; POS399/3_TM14; POS399/3_TM15; POS399/3_TM16; Poseidon; Potassium; Potassium, standard deviation; Quality code; Sample volume; Sodium; Sodium, standard deviation; SOPRAN; Sulfate; Sulfate, standard deviation; Surface Ocean Processes in the Anthropocene; Thorium, soluble; Thorium, standard deviation; Titanium, soluble; Titanium, standard deviation; Vanadium, soluble; Vanadium, standard deviation; Zinc, soluble; Zinc, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 768 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-06-26
    Description: Size segregated aerosol samples were collected during the OASIS (“Organic very short lived substances and their Air Sea Exchange from the Indian Ocean to the Stratosphere”) cruises (FS Sonne, SO234-2 & SO235) during 8 - 20 July & 23 July – 7 August 2014 in the southern Indian Ocean (~30 E - 75 E, 30 S – 5 N). The samples were collected by Birgit Quack of GEOMAR, Kiel, Germany. The aerosol sampler was situated on the roof of the ship's wheelhouse and was connected to an automatic wind sector controller to prevent contamination of the samples from the ship's stack. Most samples were collected using a Sierra-type cascade impactor to separate the aerosol particles at an aerodynamic diameter cutoff of 1 µm. Collection time for these samples varied between 27.7 and 46.9 hours. For one sample, 6 impactor stages and a backup filter were used to give more detailed information aerosol size distribution. This sample was collected over 91.7 hours. Samples were extracted with ultrapure water and the major ions Na+, NH4+, Mg2+, K+, Ca2+, Cl-, NO3-, SO42-, oxalate, Br- and methanesulfonate were determined by ion chromatography (IC). Total soluble iodine (TSI) was determined by inductively coupled plasma - mass spectrometry (ICP-MS) and iodide (I-) and iodate (IO3-) were determined by IC-ICP-MS. The dataset contains the atmospheric concentrations of all measured soluble major ions (in nmol/m³) and iodine species (in pmol/ m³).
    Keywords: Aerosol size distribution; Air volume; Ammonium, soluble; Ammonium, soluble, standard deviation; Bromide, soluble; Bromide, soluble, standard deviation; Calcium, soluble; Calcium, soluble, standard deviation; Chloride, soluble; Chloride, soluble, standard deviation; Date/Time of event; Date/Time of event 2; Elemental species separation and detection (IC-ICP-MS); Event label; High volume aerosol collector (Graseby-Anderson type); Inductively coupled plasma - mass spectrometry (ICP-MS); Iodate, soluble; Iodate, soluble, standard deviation; Iodide, soluble; Iodide, soluble, standard deviation; Iodine, soluble; Iodine, soluble, standard deviation; iodine speciation; Ion chromatography; Latitude of event; Latitude of event 2; Longitude of event; Longitude of event 2; Magnesium, soluble; Magnesium, soluble, standard deviation; major ions; Methane sulfonic acid; Methane sulfonic acid, standard deviation; Nitrate, soluble; Nitrate, soluble, standard deviation; OASIS; Oxalate, soluble; Oxalate, soluble, standard deviation; Potassium, soluble; Potassium, soluble, standard deviation; Sample code/label; Size fraction; SO234/2; SO234/2_MI01; SO234/2_MI02; SO234/2_MI03; SO234/2_MI04; SO234/2_MI05; SO235; SO235_MI09; SO235_MI10; SO235_MI11; SO235_MI13; SO235_MI14; Sodium, soluble; Sodium, soluble, standard deviation; Sonne; Southern Indian Ocean; SPACES II; Sulfate, soluble; Sulfate, soluble, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 709 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  IFM-GEOMAR Leibniz-Institute of Marine Sciences, Kiel University
    Publication Date: 2024-06-26
    Keywords: AEROS; Aerosol sampler; Aluminium, soluble; Aluminium, standard deviation; Aluminium, total; Ammonium; Ammonium, standard deviation; Calcium; Calcium, standard deviation; Chloride, standard deviation; Chloride in air; Date/time end; Date/time start; Event label; Iron, soluble; Iron, standard deviation; Iron, total; LATITUDE; Latitude 2; LONGITUDE; Longitude 2; Magnesium; Magnesium, standard deviation; Manganese, soluble; Manganese, standard deviation; Manganese, total; Nitrate; Nitrate, standard deviation; Nitrogen, total dissolved; Nitrogen, total dissolved, standard deviation; POS348; POS348_TM01; POS348_TM02; POS348_TM03; POS348_TM04; POS348_TM05; POS348_TM06; POS348_TM07; POS348_TM08; POS348_TM09; POS348_TM10; POS348_TM11; Poseidon; Potassium; Potassium, standard deviation; Sample volume; Sodium; Sodium, standard deviation; SOPRAN; Sulfate; Sulfate, standard deviation; Surface Ocean Processes in the Anthropocene; Titanium, soluble; Titanium, standard deviation; Zinc, soluble; Zinc, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 420 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Yodle, Chan; Baker, Alex R (2019): Influence of collection substrate and extraction method on the speciation of soluble iodine in atmospheric aerosols. Atmospheric-Environment-X, 1, 100009, https://doi.org/10.1016/j.aeaoa.2019.100009
    Publication Date: 2024-06-26
    Description: Total Suspended Particulate (TSP) aerosol samples were collected daily during the Stratospheric ozone: Halogen Impacts in a Varying Atmosphere (SHIVA) cruise (FS Sonne, SO218) during 16 - 28 November 2011 through the South China and Sulu Seas. The samples were collected by Birgit Quack and Anke Schneider of GEOMAR, Kiel, Germany. The aerosol sampler was situation on the roof of the ship's wheelhouse and collection time for each sample varied between 13.0 and 24.7 hours. Samples were extracted with ultrapure water and the major ions Na+, NH4+, Mg2+, K+, Ca2+, Cl-, NO3-, SO42-, oxalate and Br- were determined by ion chromatography (IC). Total soluble iodine (TSI) was determined by inductively coupled plasma - mass spectrometry (ICP-MS) and iodide (I-) and iodate (IO3-) were determined by IC-ICP-MS. The dataset contains the atmospheric concentrations of all measured soluble major ions (in nmol m-3) and iodine species (in pmol m-3). The data for iodine species are reported in “The influence of collection substrate and extraction method on the speciation of soluble iodine in atmospheric aerosols”, Chan Yodle, Alex R. Baker, in preparation for Analytical and Bioanalytical Chemistry.
    Keywords: Air volume; Ammonium, soluble; Ammonium, soluble, standard deviation; Bromide, soluble; Bromide, soluble, standard deviation; Calcium, soluble; Calcium, soluble, standard deviation; Chloride, soluble; Chloride, soluble, standard deviation; CT; DATE/TIME; Elemental species separation and detection (IC-ICP-MS); Inductively coupled plasma - mass spectrometry (ICP-MS); Iodate, soluble; Iodate, soluble, standard deviation; Iodide, soluble; Iodide, soluble, standard deviation; Iodine, soluble; Iodine, soluble, standard deviation; Ion chromatography; LATITUDE; Latitude 2; LONGITUDE; Longitude 2; Magnesium, soluble; Magnesium, soluble, standard deviation; Nitrate, soluble; Nitrate, soluble, standard deviation; Oxalate, soluble; Oxalate, soluble, standard deviation; Potassium, soluble; Potassium, soluble, standard deviation; Quality code; Sample ID; SO218; SO218-track; Sodium, soluble; Sodium, soluble, standard deviation; Sonne; SONNE-SHIVA; South China Sea; Sulfate, soluble; Sulfate, soluble, standard deviation; Underway cruise track measurements
    Type: Dataset
    Format: text/tab-separated-values, 330 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-11-04
    Description: The global tropospheric budget of gaseous and particulate non-methane organic matter (OM) is re-examined to provide a holistic view of the role that OM plays in transporting the essential nutrients nitrogen and phosphorus to the ocean. A global 3-dimensional chemistry-transport model was used to construct the first global picture of atmospheric transport and deposition of the organic nitrogen (ON) and organic phosphorus (OP) that are associated with OM, focusing on the soluble fractions of these nutrients. Model simulations agree with observations within an order of magnitude. Depending on location, the observed water soluble ON fraction ranges from similar to 3% to 90% (median of similar to 35%) of total soluble N in rainwater; soluble OP ranges from similar to 20-83% (median of similar to 35%) of total soluble phosphorus. The simulations suggest that the global ON cycle has a strong anthropogenic component with similar to 45% of the overall atmospheric source (primary and secondary) associated with anthropogenic activities. In contrast, only 10% of atmospheric OP is emitted from human activities. The model-derived present-day soluble ON and OP deposition to the global ocean is estimated to be similar to 16 Tg-N/yr and similar to 0.35 Tg-P/yr respectively with an order of magnitude uncertainty. Of these amounts similar to 40% and similar to 6%, respectively, are associated with anthropogenic activities, and 33% and 90% are recycled oceanic materials. Therefore, anthropogenic emissions are having a greater impact on the ON cycle than the OP cycle; consequently increasing emissions may increase P-limitation in the oligotrophic regions of the world's ocean that rely on atmospheric deposition as an important nutrient source.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-01-27
    Description: Dissolved iron (dFe) distributions and atmospheric and vertical subduction fluxes of dFe were determined in the upper water column for two meridional transects of the Atlantic Ocean. The data demonstrate the disparity between the iron biogeochemistry of the North and South Atlantic Ocean and show well-defined gradients of size fractionated iron species in surface waters between geographic provinces. The highest dFe and lowest mixed layer residence times (0.4–2.5 years) were found in the northern tropical and subtropical regions. In contrast, the South Atlantic Gyre had lower dFe concentrations (〈0.4 nM) and much longer residence times (〉5 years), presumably due to lower atmospheric inputs and more efficient biological recycling of iron in this region. Vertical input fluxes of dFe to surface waters ranged from 20 to 170 nmol m–2 d–1 in the North Atlantic and tropical provinces, whereas average fluxes of 6–13 nmol m–2 d–1 were estimated for the South Atlantic. Our estimates showed that the variable dFe distribution over the surface Atlantic (〈0.1–2.0 nM) predominantly reflected atmospheric Fe deposition fluxes (〉50% of total vertical Fe flux to surface waters) rather than upwelling or vertical mixing. This demonstrates the strength of the connection between land-derived atmospheric Fe fluxes and the biological cycling of carbon and nitrogen in the Atlantic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-04-23
    Description: The supply and bioavailability of iron (Fe) controls primary productivity and N2-fixation in large parts of the global ocean. An important, yet poorly quantified, source to the ocean is particulate Fe (pFe). Here we present the first combined dataset of particulate, labile-particulate (L-pFe) and dissolved Fe (dFe) from the (sub)-tropical North Atlantic. We show a strong relationship between L-pFe and dFe, indicating a dynamic equilibrium between these two phases whereby particles ‘buffer’ dFe and maintain the elevated concentrations observed. Moreover, L-pFe can increase the overall ‘available’ (L-pFe + dFe) Fe pool by up to 55%. The lateral shelf flux of this available Fe was similar in magnitude to observed soluble aerosol-Fe deposition, a comparison that has not been previously considered. These findings demonstrate that L-pFe is integral to Fe cycling and hence plays a role in regulating carbon cycling, warranting its’ inclusion in Fe budgets and biogeochemical models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-04-23
    Description: Stable isotope compositions can potentially be used to trace atmospheric Cd inputs to the surface ocean and anthropogenic Cd emissions to the atmosphere. Both of these applications may provide valuable insights into the effects of anthropogenic activities on the cycling of Cd in the environment. However, a lack of constraints for the Cd isotope compositions of atmospheric aerosols is currently hindering such studies. Here, we present stable Cd isotope data for aerosols collected over the Tropical Atlantic Ocean. The samples feature variable proportions of mineral dust-derived and anthropogenic Cd, yet exhibit similar isotope compositions, thus negating the distinction of these Cd sources using isotopic signatures in this region. Isotopic variability between these two atmospheric Cd sources may be identified in other areas, and thus warrants further investigation. Regardless, these data provide important initial constraints on the isotope composition of atmospheric Cd inputs to the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...