GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (1)
  • Oceanography Society  (1)
Document type
Years
  • 1
    Publication Date: 2019-09-23
    Description: Siberian river water is a first-order contribution to the Arctic freshwater budget, with the Ob, Yenisey, and Lena supplying nearly half of the total surface freshwater flux. However, few details are known regarding where, when, and how the freshwater transverses the vast Siberian shelf seas. This paper investigates the mechanism, variability, and pathways of the fresh Kara Sea outflow through Vilkitsky Strait toward the Laptev Sea. We utilize a high-resolution ocean model and recent shipboard observations to characterize the freshwater-laden Vilkitsky Strait Current (VSC), and shed new light on the little-studied region between the Kara and Laptev Seas, characterized by harsh ice conditions, contrasting water masses, straits, and a large submarine canyon. The VSC is 10-20 km wide, surface intensified, and varies seasonally (maximum from August to March) and interannually. Average freshwater (volume) transport is 500 ± 120 km3 a-1 (0.53 ± 0.08 Sv), with a baroclinic flow contribution of 50-90%. Interannual transport variability is explained by a storage-release mechanism, where blocking-favorable summer winds hamper the outflow and cause accumulation of freshwater in the Kara Sea. The year following a blocking event is characterized by enhanced transports driven by a baroclinic flow along the coast that is set up by increased freshwater volumes. Eventually, the VSC merges with a slope current and provides a major pathway for Eurasian river water toward the western Arctic along the Eurasian continental slope. Kara (and Laptev) Sea freshwater transport is not correlated with the Arctic Oscillation, but rather driven by regional summer pressure patterns.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Oceanography Society, 2011. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 24 no. 3 (2011): 102–113, doi:10.5670/oceanog.2011.61.
    Description: Observational data show that the Arctic Ocean has significantly and rapidly changed over the last few decades, which is unprecedented in the observational record. Air and water temperatures have increased, sea ice volume and extent have decreased, permafrost has thawed, storminess has increased, sea level has risen, coastal erosion has progressed, and biological processes have become more complex and diverse. In addition, there are socio-economic impacts of Arctic environmental change on Arctic residents and the world, associated with tourism, oil and gas exploration, navigation, military operations, trade, and industry. This paper discusses important results of the Arctic Ocean Model Intercomparison Project, which is advancing the role of numerical modeling in Arctic Ocean and sea ice research by stimulating national and international synergies for high-latitude research.
    Description: This research is supported by the National Science Foundation Office of Polar Programs, awards ARC-0804010, ARC-80630600, ARC-81284800 and ARC-82486400.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...