GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (14)
  • Kiel : Inst. für Meereskunde, Abt. Meeresphysik  (4)
  • Technische Universität Clausthal Arbeitsgruppe Meerestechnik und Marine Mineralrohstoffe  (3)
  • 11
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 103 (C10). 21,469-21,479.
    Publication Date: 2018-04-30
    Description: Mechanical energy terms are calculated from moored current meter data in the Cape Verde Frontal Zone (about 20°N, 25°W) and compared with those derived from a mesoscale model of this frontal region. The model is of the Bleck and Boudra [1981] type with isopycnal coordinates. An initially zonal jet, representing the Canary Current, is allowed to develop under the influence of baroclinic and barotropic instability processes. We find reasonable agreement in magnitudes, somewhat smaller in the model, and similar distributions in the vertical. This leads to the conclusion that the energy transfer terms from the model can be expected to be sufficiently close to reality. Determination of the transfer terms confirms that the energy transfer in the zone is dominated by baroclinic instability processes while barotropic instability is of minor importance. Average baroclinic instability energy transfer terms reach values of 2–3 μW m−3 in the pycnocline. Peak layer mean values are of the order 10 μW m−3. It is shown that the spatial distribution of active transfer regions is closely related to the structure of the transient eddy field in the frontal zone and that strong instability processes are restricted to the pycnocline.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 103 (C3). pp. 5419-5428.
    Publication Date: 2018-04-30
    Description: Recent hydrographic sections and high-quality historical data sets are used to determine geostrophic currents at subtropical latitudes in the western basin of the South Atlantic. Levels of no motion are determined from water mass information and a mass balance constraint to obtain the transport field of North Atlantic Deep Water (NADW) in this region. The incoming NADW transport of about 20 Sv from the north at 19 degrees S appears to be balanced by only one third of this transport leaving in the south and two thirds leaving to the east or northeast at the Mid-Atlantic Ridge. A simple model is proposed to determine the cause of the NADW branching. It is shown that potential vorticity preservation in the presence of topographic changes leads to a similar flow pattern as observed, with branching near the Vitoria-Trindade-Ridge and also an eastward turning of the southward western boundary current at about 28 degrees S, the latitude where a balance of planetary vorticity change and stretching can be expected.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 94 (C4). pp. 4757-4762.
    Publication Date: 2019-02-27
    Description: A 4-year expendable bathythermograph data set (1984–1987) from the area between southern Brazil and the Antarctic Peninsula provides information on the interannual variability of front locations. Two boundaries of subtropical water at different depths are identified north and south of the Brazil Current-Falkland (Malvinas) Current confluence zone. The northern Subtropical Front is displaced over a large part of the Argentine Basin from one observational period to the other. The shallow southern Subtropical Front appears fixed to the Falkland Escarpment. The Polar Front and Subantarctic Front locations do not vary much, except for one case where a cold core eddy in the Polar Frontal Zone causes a large northward displacement of the Subantarctic Front.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Technische Universität Clausthal Arbeitsgruppe Meerestechnik und Marine Mineralrohstoffe
    In:  Beiträge zur Meerestechnik, 1 . pp. 1-22.
    Publication Date: 2016-09-06
    Type: Article , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Technische Universität Clausthal Arbeitsgruppe Meerestechnik und Marine Mineralrohstoffe
    In:  Beiträge zur Meerestechnik, 1 . pp. 219-239.
    Publication Date: 2016-09-06
    Type: Article , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Technische Universität Clausthal Arbeitsgruppe Meerestechnik und Marine Mineralrohstoffe
    In:  Beiträge zur Meerestechnik, 1 . pp. 123-138.
    Publication Date: 2016-09-06
    Type: Article , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 12 (3). pp. 479-499.
    Publication Date: 2018-03-15
    Description: The meridional oceanic transports of dissolved inorganic carbon and oxygen were calculated using six transoceanic sections occupied in the South Atlantic between 11 degrees S and 30 degrees S. The total dissolved inorganic carbon (TCO2) data were interpolated onto conductivity-temperature-depth data to obtain a high-resolution data set, and Ekman, depth-dependent and depth-independent components of the transport were estimated. Uncertainties in the depth-independent velocity distribution were reduced using an inverse model. The inorganic carbon transport between 11 degrees S and 30 degrees S was southward, decreased slightly toward the south, and was -2150 +/- 200 kmol s(-1) (-0.81 +/- 0.08 Gt C yr(-1)) at 20 degrees S. This estimate includes the contribution of net mass transport required to balance the salt transport through Bering Strait. Anthropogenic CO2 concentrations were estimated for the sections. The meridional transport of anthropogenic CO2 was northward, increased toward the north, and was 430 kmol s(-1) (0.16 Gt C yr(-1)) at 20 degrees S. The calculations imply net southward inorganic carbon transport of 2580 kmol s(-1) (1 Gt C yr(-1)) during preindustrial times. The slight contemporary convergence of inorganic carbon between 10 degrees S and 30 degrees S is balanced by storage of anthropogenic CO2 and a sea-to-air flux implying little local divergence of the organic carbon transport. During the preindustrial era, there was significant regional convergence of both inorganic carbon and oxygen, consistent with a sea-to-air gas flux driven by warming. The northward transport of anthropogenic CO2 carried by the meridional overturning circulation represents an important source for anthropogenic CO2 currently being stored within the North Atlantic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 33 (L24609).
    Publication Date: 2018-02-19
    Description: The structure of the subtropical South Indian Ocean Countercurrent (SICC) is revealed by altimeter-derived absolute geostrophic surface velocities. It is a narrow, eastward-flowing current between 22° and 26°S confined to planetary wave trains which propagate westward through the Indian Ocean. Multi-year averaging identifies it as a well-defined current between Madagascar and 80°E, continuing with lower intensity between 90° and 100°E. It virtually coincides with the northern limit of Subtropical Underwater subduction. Geostrophic currents from hydrographic sections closely correspond to these surface patterns. Volume transports of the countercurrent down to 800 dbar are of order (107 m3 s−1). Evidence is provided for a narrow branch of the South Equatorial Current (SEC) approaching Madagascar near 18°S and feeding the southern East Madagascar Current (EMC) which appears to continue westward around the southern tip of Madagascar. It then partially retroflects and nourishes the SICC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 114 . C01005.
    Publication Date: 2019-09-23
    Description: Data sets from satellite observations and a nested high-resolution model are used to study a source region of the Agulhas Current. Altimeter-derived geostrophic surface currents are averaged over varying periods, providing evidence of the persistence of flow patterns in the extension of the southern branch of the East Madagascar Current (SEMC). South of Madagascar, the SEMC separates into one branch toward the Agulhas Current and into a second branch retroflecting and connecting to the Subtropical Indian Ocean Countercurrent (SICC). Good agreement is found between long-term mean patterns of observational and model dynamic heights. Two basic modes are identified in the SEMC extension, with anticyclonic motion favoring retroflection in the northern Mozambique Basin when the extension is in a southwestward direction and cyclonic motion occurring in the case of the SEMC flowing westward along the southern Madagascar slope. A cross-correlation sequence between model SEMC transports and the modal changes in the extension region displays a correlation at about 1-month lag which agrees with eddy propagation time from the SEMC to the outflow region. Mean model SEMC transports are determined using floats released at 21 degrees S, and the contribution of the SEMC to the SICC is obtained using floats injected at 55 degrees E with the model running backward. Almost half of the SEMC volume transport contributes to the Agulhas system, and about 40% of SICC water originates from the SEMC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 27 (9). pp. 1243-1246.
    Publication Date: 2018-02-14
    Description: The salinity, temperature and current distributions have been measured during the TROPAC cruise (Oct./Nov. 1996) at two sections, i.e. 143°E and 150°E, during the final phase of the 1995/1996 La Niña. The results present evidence that the fresh pool and the salinity front at its eastern boundary had moved far to the west, and that a barrier layer existed in that phase. The observed currents support the idea that advective processes play an essential role in creating the thermohaline structure during this ENSO phase. In relation with this process, it is found that the westward subduction mechanism of relatively dense eastern equatorial waters may apply during that phase.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...