GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Ocean circulation. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (737 pages)
    Edition: 1st ed.
    ISBN: 9780080491974
    Series Statement: Issn Series ; v.Volume 103
    DDC: 551.47
    Language: English
    Note: Cover -- Copyright Page -- Contents -- Contributors -- Foreword -- Preface -- Acknowledgment -- Section 1: The Ocean and Climate -- Chapter 1.1. Climate and Oceans -- 1.1.1 WOCE and the World Climate Research Programme -- 1.1.2 The scientific approach to the complex climate system -- 1.1.3 Ocean-atmosphere interaction and climate -- 1.1.4 Rapid changes related to the oceans -- 1.1.5 Cryosphere and the oceans -- 1.1.6 Anthropogenic climate change and the oceans -- 1.1.7 Future climate research and ocean observing systems -- Chapter 1.2. Ocean Processes and Climate Phenomena -- 1.2.1 A global perspective -- 1.2.2 Air-sea fluxes -- 1.2.3 Ocean storage of heat and fresh water -- 1.2.4 Ocean circulation -- 1.2.5 Ocean transport of heat, fresh water and carbon -- 1.2.6 Climatic and oceanic variability -- 1.2.7 Impacts of ocean climate -- 1.2.8 Conclusion -- Chapter 1.3. The Origins, Development and Conduct of WOCE -- 1.3.1 Introduction -- 1.3.2 Large-scale oceanography in the 1960s and 1970s -- 1.3.3 Ocean research and climate -- 1.3.4 Implementation of WOCE (SSG initiatives) -- 1.3.5 Implementation and oversight -- 1.3.6 Was WOCE a success and what is its legacy? -- Section 2: Observations and Models -- Chapter 2.1. Global Problems and Global Observations -- 2.1.1 Different views of the ocean -- 2.1.2 The origins of WOCE -- 2.1.3 What do we know? -- 2.1.4 The need for global-scale observations -- 2.1.5 Where do we go from here? -- Chapter 2.2. High-Resolution Modelling of the Thermohaline and Wind-Driven Circulation -- 2.2.1 The improving realism of ocean models -- 2.2.2 Historical perspective -- 2.2.3 Basic model design considerations: equilibrium versus non-equilibrium solutions -- 2.2.4 Examples of model behaviour in different dynamical regimes -- 2.2.5 Concluding remarks -- Chapter 2.3. Coupled Ocean-Atmosphere Models -- 2.3.1 Why coupled models?. , 2.3.2 Formulation of coupled models -- 2.3.3 Model drift and flux adjustment -- 2.3.4 Initialization of coupled models -- 2.3.5 Coupled model simulation of present and past climates -- 2.3.6 Coupled model simulation of future climates -- 2.3.7 Climate models, WOCE and future observations -- 2.3.8 Summary and future developments -- Section 3: New Ways of Observing the Ocean -- Chapter 3.1. Shipboard Observations during WOCE -- 3.1.1 The role of hydrographic measurements -- 3.1.2 CTD and sample measurements -- 3.1.3 Current measurements in the shipboard hydrographic programme -- 3.1.4 Shipboard meteorology -- 3.1.5 Summary and conclusions -- Chapter 3.2. Subsurface Lagrangian Observations during the 1990s -- 3.2.1 Determining currents in the ocean -- 3.2.2 Historical aspects: Stommel's -- 3.2.3 The WOCE Float Programme -- 3.2.4 WOCE float observations -- 3.2.5 The future -- Chapter 3.3. Ocean Circulation and Variability from Satellite Altimetry -- 3.3.1 Altimeter observations -- 3.3.2 The ocean general circulation -- 3.3.3 Large-scale sea-level variability -- 3.3.4 Currents and eddies -- 3.3.5 Concluding discussions -- Chapter 3.4. Air-Sea Fluxes from Satellite Data -- 3.4.1 Forcing the ocean -- 3.4.2 Bulk parameterization -- 3.4.3 Wind forcing -- 3.4.4 Thermal forcing -- 3.4.5 Hydrologic forcing -- 3.4.6 Future prospects -- Chapter 3.5. Developing the WOCE Global Data System -- 3.5.1 Organization and planning for WOCE data systems -- 3.5.2 Elements of the WOCE Data System -- 3.5.3 The WOCE Global Data Set and future developments -- Section 4: The Global Flow Field -- Chapter 4.1. The World Ocean Surface Circulation -- 4.1.1 Background -- 4.1.2 Methodology -- 4.1.3 The global mean velocity and velocity variance -- 4.1.4 The wind-driven Ekman currents -- 4.1.5 Future global circulation observations -- Chapter 4.2. The Interior Circulation of the Ocean. , 4.2.1 Processes in the ocean interior -- 4.2.2 Observational evidence -- 4.2.3 Theory of gyre-scale circulation -- 4.2.4 The abyssal circulation -- 4.2.5 Conclusions -- Chapter 4.3. The Tropical Ocean Circulation -- 4.3.1 Flow and water mass transformation patterns -- 4.3.2 Equatorial phenomena in the Pacific Ocean -- 4.3.3 Equatorial Atlantic -- 4.3.4 Near-equatorial circulation in the Indian Ocean -- 4.3.5 Overall conclusions -- Chapter 4.4. Tropical-Extratropical Oceanic Exchange Pathways -- 4.4.1 The role of diffusion and advection -- 4.4.2 Tropical-subtropical exchanges of thermocline waters -- 4.4.3 Tropical-subpolar exchange of Intermediate Waters -- 4.4.4 Summary and further issues -- Chapter 4.5. Quantification of the Deep Circulation -- 4.5.1 Deep circulation in the framework of WOCE -- 4.5.2 Deep Western Boundary Currents -- 4.5.3 The interior: The Deep Basin Experiment -- 4.5.4 Summary -- Chapter 4.6. The Antarctic Circumpolar Current System -- 4.6.1 Flow in the zonally unbounded ocean -- 4.6.2 Observations of the Antarctic Circumpolar Current -- 4.6.3 Dynamics of the ACC -- 4.6.4 Water mass formation and conversion -- 4.6.5 The Southern Ocean and the global overturning circulations -- 4.6.6 Conclusions -- Chapter 4.7. Interocean Exchange -- 4.7.1 Interocean links -- 4.7.2 Bering Strait -- 4.7.3 Indonesian Seas -- 4.7.4 The Agulhas Retroflection -- 4.7.5 Discussion -- Section 5: Formation and Transport of Water Masses -- Chapter 5.1. Ocean Surface Water Mass Transformation -- 5.1.1 The problem -- 5.1.2 Theory of surface water mass transformation -- 5.1.3 Ocean surface temperature, salinity and density -- 5.1.4 Surface fluxes of heat, fresh water and density -- 5.1.5 Surface water mass transformation and formation -- 5.1.6 Summary -- Chapter 5.2. Mixing and Stirring in the Ocean Interior -- 5.2.1 Scales of mixing and stirring. , 5.2.2 Background -- 5.2.3 The Temporal-Residual-Mean circulation -- 5.2.4 Lateral dispersion between the mesoscale and the microscale -- 5.2.5 Diapycnal mixing in and above the main thermocline -- 5.2.6 Mixing in the abyss -- 5.2.7 Discussion -- Chapter 5.3. Subduction -- 5.3.1 A little of the background on oceanic subduction -- 5.3.2 Surface-layer dynamics and thermodynamics of the subduction process -- 5.3.3 Development of steady, continuous models: Application to numerical model analysis and observations -- 5.3.4 Transient response of the thermocline to decadal variability -- 5.3.5 Summary and outlook -- Chapter 5.4. Mode Waters -- 5.4.1 Ventilation and mode water generation -- 5.4.2 Definition, detection and general characteristics of mode waters -- 5.4.3 Geographical distribution of mixed-layer depth and mode waters in the world's oceans -- 5.4.4 Temporal variability of mode water properties and distribution -- 5.4.5 Summary -- Chapter 5.5. Deep Convection -- 5.5.1 Convection and spreading -- 5.5.2 Plumes - the mixing agent -- 5.5.3 Temperature and salinity variability -- 5.5.4 Restratification -- 5.5.5 Summary and discussion -- Chapter 5.6. The Dense Northern Overflows -- 5.6.1 The sources -- 5.6.2 Overflow paths -- 5.6.3 Observed transport means and variability -- 5.6.4 Processes in the overflows -- 5.6.5 Analytical models of the overflow -- 5.6.6 Numerical models of the overflow -- 5.6.7 Overflow variability -- 5.6.8 What have we learnt in WOCE? -- Chapter 5.7. Mediterranean Water and Global Circulation -- 5.7.1 Marginal seas -- 5.7.2 Formation of Mediterranean Water -- 5.7.3 Outflow of Mediterranean Water at the Strait of Gibraltar -- 5.7.4 The effect of Mediterranean Water outflow on the circulation of the North Atlantic and the World Oceans -- Chapter 5.8. Transformation and Age of Water Masses -- 5.8.1 Background. , 5.8.2 Tracer methodology and techniques -- 5.8.3 Exemplary results -- 5.8.4 Outlook -- Section 6: Large-Scale Ocean Transports -- Chapter 6.1. Ocean Heat Transport -- 6.1.1 The global heat balance -- 6.1.2 Bulk formula estimates of ocean heat transport -- 6.1.3 Residual method estimates of ocean heat transport -- 6.1.4 Direct estimates of ocean heat transport -- 6.1.5 Discussion -- 6.1.6 Challenges -- 6.1.7 Summary -- 6.1.8 Outlook for direct estimates of ocean heat transport -- Chapter 6.2. Ocean Transport of Fresh Water -- 6.2.1 The importance of freshwater transport -- 6.2.2 Indirect estimates of oceanic freshwater transport -- 6.2.3 Impacts of uncertainties on model development -- 6.2.4 Direct ocean estimates of freshwater transport -- 6.2.5 Comparison of direct and indirect flux estimates -- 6.2.6 Mechanisms of oceanic freshwater transport -- 6.2.7 Global budgets -- 6.2.8 Summary -- Chapter 6.3. Storage and Transport of Excess CO2 in the Oceans: The JGOFS/WOCE Global CO2 Survey -- 6.3.1 Introduction -- 6.3.2 Background -- 6.3.3 The JGOFS/WOCE Global CO2 Survey -- 6.3.4 Synthesis of Global CO2 Survey data: Review -- 6.3.5 Conclusions and outlook -- Section 7: Insights for the Future -- Chapter 7.1. Towards a WOCE Synthesis -- 7.1.1 Exploiting the WOCE data set -- 7.1.2 Data-based analyses -- 7.1.3 Model evaluation and development -- 7.1.4 Ocean state estimation -- 7.1.5 Summary and outlook -- Chapter 7.2. Numerical Ocean Circulation Modelling: Present Status and Future Directions -- 7.2.1 Remarks on the history of ocean modelling -- 7.2.2 Space-time scales of ocean processes and models -- 7.2.3 Modelling issues -- 7.2.4 Atmospheric forcing and coupling -- 7.2.5 Organization of model development -- 7.2.6 Concluding remarks -- Chapter 7.3. The World during WOCE -- 7.3.1 Assessing the representativeness of the WOCE data set. , 7.3.2 The state of the atmosphere during WOCE.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: World Ocean Circulation Experiment. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (893 pages)
    Edition: 2nd ed.
    ISBN: 9780123918536
    Series Statement: Issn Series ; v.Volume 103
    DDC: 551.46/2
    Language: English
    Note: Front Cover -- Ocean Circulation and Climate: A 21st Century Perspective -- Copyright -- Contents -- Contributors -- Acknowledgments -- Cover Graphics -- Preface -- Part I: The Ocean's Role in the Climate System -- Chapter 1: The Ocean as a Component of the Climate System -- 1. Setting the Scene -- 2. The Ocean as an Exchanging Earth System Reservoir -- 3. Atmosphere-Ocean Fluxes and Meridional Transports -- 4. Global-Scale Surface and Deep Ocean Circulations -- 5. Large-Scale Modes of Variability Involving the Ocean -- 6. The Ocean's Role in Past Climate Change -- 7. The Ocean in the Anthropocene -- 8. Concluding Thoughts -- Acknowledgments -- References -- Chapter 2: Paleoclimatic Ocean Circulation and Sea-Level Changes -- 1. Introduction -- 2. Reconstructing Past Ocean States -- 2.1. Proxies for Past Ocean Circulation -- 2.1.1. Nutrient Water Mass Tracers -- 2.1.2. Conservative Water Mass Tracers -- 2.1.3. Circulation Rate Tracers -- 2.1.4. Other Tracers -- 2.2. Past Sea-Level Proxies -- 2.2.1. Coastal Morphology and Corals -- 2.2.2. Sediment Cores -- 2.2.3. Manmade Sea-Level Indicators -- 2.3. Models -- 3. The Oceans in the Quaternary -- 3.1. The Last Glacial Maximum -- 3.2. Abrupt Glacial Climate Changes -- 3.2.1. Deglaciation -- 3.3. Glacial Cycles -- 3.4. Interglacial Climates -- 4. The Deeper Past -- 4.1. Challenges of Deep-Time Paleoceanography -- 4.2. The Oceans During the Mid-Cretaceous Warm Period -- 5. Outlook -- Acknowledgments -- References -- Part II: Ocean Observations -- Chapter 3: In Situ Ocean Observations: A Brief History, Present Status, and Future Directions -- 1. Introduction -- 2. Development of Present Observational Capability -- 2.1. Late Nineteenth to Mid-Twentieth Centuries -- 2.2. Second Half of Twentieth Century -- 2.3. Twenty-First Century: Consolidation of Capabilities and Growth of Sustained Observations. , 3. Emerging and Specialized Ocean Observing Technologies -- 3.1. Advanced Observing Platforms -- 3.2. Specialized Observing Systems and Technologies -- 3.3. New Sensors -- 4. Changes in Data Volume and Coverage and Implication for Synthesis Products -- 5. The Future: Outstanding Issues and a New Framework for Global Ocean Observing -- 5.1. Building on OceanObs'09 -- 6. Conclusions -- References -- Chapter 4: Remote Sensing of the Global Ocean Circulation -- 1. Introduction -- 2. Ocean General Circulation -- 3. Variability of the Large-Scale Ocean Circulation -- 3.1. Sea Surface Height -- 3.2. Ocean Mass and Bottom Pressure -- 3.3. Global Mean Sea-Level Change (see also Chapter 27) -- 3.4. Forcing by the Atmosphere and Air-Sea Interaction -- 4. Mesoscale Eddies and Fronts -- 4.1. Mapping the Eddy Field -- 4.2. Wave Number Spectra and the Ocean Energy Cascade -- 4.3. Seasonal and Interannual Variations in Eddy Energy -- 4.4. Tracking Individual Eddies -- 4.5. Surface Currents from Multisensor Mapping -- 4.6. Eddy Fluxes of Ocean Properties (see also Chapter 8) -- 4.7. Submesoscale Dynamics -- 4.8. Eddies and Biogeochemical Processes -- 5. Summary and Outlook -- Acknowledgments -- References -- Part III: Ocean Processes -- Chapter 5: Exchanges Through the Ocean Surface -- 1. Introduction -- 2. Air-Sea Exchange Formulae and Climatological Fields -- 2.1. Air-Sea Exchange Formulae -- 2.2. Climatological Fields -- 3. Measurement Techniques and Review of Datasets -- 3.1. Flux Measurement and Estimation Techniques -- 3.1.1. Advances in Parameterizations and In Situ Flux Measurements -- 3.1.2. High Quality In Situ Surface Flux Datasets -- 3.2. Flux Datasets: Overview of Recent Products -- 3.2.1. Atmospheric Reanalyses -- 3.2.2. Satellite Observations -- 3.2.3. In Situ Observations -- 3.2.4. Blended Products -- 3.3. Flux Datasets: Evaluation Techniques. , 4. Variability and Extremes -- 4.1. Impacts of Large-Scale Modes of Variability on Surface Fluxes -- 4.2. Surface Flux Response to Anthropogenic Climate Change -- 4.3. Transfers Under Extreme Conditions -- 5. Ocean Impacts -- 5.1. Impacts on Near-Surface Ocean Layer Properties, Water Mass Transformation -- 5.2. Impacts of Surface Fluxes on Ocean Circulation -- 6. Outlook and Conclusions -- 6.1. Prospects for Improved Flux Datasets -- 6.2. Prospects for Enhanced Observational Constraints -- 6.3. Conclusions -- Acknowledgments -- References -- Chapter 6: Thermodynamics of Seawater -- 1. Introduction -- 2. Absolute Salinity SA and Preformed Salinity S* -- 2.1. Reference-Composition Salinity SR -- 2.2. Absolute Salinity SA -- 2.3. Preformed Salinity S* -- 3. The Gibbs-Function Approach to Evaluating Thermodynamic Properties -- 4. The First Law of Thermodynamics and Conservative Temperature Θ -- 5. The 48-Term Expression for Specific Volume -- 6. Changes to Oceanographic Practice Under TEOS-10 -- 7. Ocean Modeling Using TEOS-10 -- 8. Summary -- Acknowledgments -- References -- Chapter 7: Diapycnal Mixing Processes in the Ocean Interior -- 1. Introduction -- 2. Mixing Basics -- 3. Turbulence in and Below the Surface Mixed Layer -- 3.1. Langmuir Turbulence -- 3.2. Inertial Motions -- 3.3. An Equatorial Example -- 3.4. Fronts and Other Lateral Processes -- 4. Mixing in the Ocean Interior -- 4.1. Internal Wave Breaking -- 4.1.1. Dissipation Near Internal Tide Generation Sites -- 4.1.2. Dissipation Near-Inertial Wave Generation Sites -- 4.1.3. Wave-Wave Interactions -- 4.1.4. Distant Graveyards -- 4.2. Mixing in Fracture Zones -- 4.3. Mesoscale Dissipation as a Source of Turbulent Mixing -- 4.4. In-Depth Example: Southern Ocean Mixing (see also Chapter 18) -- 5. Discussion -- 5.1. Finescale Parameterizations of Turbulent Mixing. , 5.2. Global Values and Patterns -- 5.3. Representing Patchy Mixing in Large-Scale Models: Progress and Consequences -- 6. Summary and Future Directions -- Acknowledgments -- References -- Chapter 8: Lateral Transport in the Ocean Interior -- 1. Introduction -- 2. Theory of Mass, Tracer, and Vector Transport -- 2.1. Fundamental Equations -- 2.1.1. Primitive Equations -- 2.1.2. Minimal-Disturbance Planes and Slopes -- 2.1.3. Density-Coordinate Continuity and Tracer Equations -- 2.2. Steady, Conservative Equations -- 2.3. Reynolds-Averaged Equations -- 2.4. Diffusion by Continuous Movements -- 2.4.1. Diagnosing Eigenvectors, Eigenvalues, and Principal Axes of Diffusivities -- 2.5. Sources of Anisotropy in Oceanic Diffusion -- 2.6. The Veronis Effect -- 2.7. Streamfunction and Diffusivity -- 3. Observations and Models of Spatial Variations of Eddy Statistics -- 4. Mesoscale Isoneutral Diffusivity Variation Parameterizations -- 4.1. Parameterizations Versus Diagnosed K -- 4.1.1. Eddy Scales Versus Instability Scale -- 4.1.2. Eddy Versus Instability Spatial Scale -- 4.1.3. Eddy Versus Instability Time Scale -- 4.2. New Parameterization Approaches and Future Developments -- 5. Conclusions and Remaining Questions -- Acknowledgment -- References -- Chapter 9: Global Distribution and Formation of Mode Waters -- 1. Mode Water Observations -- 2. Global Water Mass Census of the Upper Ocean -- 3. Global Distribution of Mode Water -- 4. Formation of Mode Water -- 5. PV Framework -- 6. Mode Water and Climate -- 7. Conclusions -- Acknowledgments -- References -- Chapter 10: Deepwater Formation -- 1. Introduction -- 1.1. Circulation and Distribution of NADW and AABW -- 1.2. Observed Heat Content Changes in AABW -- 1.3. Observed Heat Content Changes in Upper and Lower NADW -- 2. Processes of Deepwater Formation. , 2.1. Deep Convection: The Example of Formation of Upper North Atlantic Deep Water -- 2.2. Entrainment: The Example of the Formation of the Lower North Atlantic Deep Water -- 2.3. Shelf and Under-Ice Processes: The Example of Formation of AABW -- 2.3.1. Formation Rates and Spreading of AABW -- 3. Interannual and Decadal Variability in Properties, Formation Rate, and Circulation -- 3.1. Labrador Sea Water: Variability in Properties and Formation Rate -- 3.2. Greenland-Scotland Ridge Overflow Water: Variability in Properties and Overflow Rate -- 3.3. Relationship Between Formation Rates of NADW and Changes in the AMOC -- 3.4. Antarctic Bottom Water: Variability in Properties and Formation Rate -- 4. Conclusions and Outlook -- References -- Part IV: Ocean Circulation and Water Masses -- Chapter 11: Conceptual Models of the Wind-Driven and Thermohaline Circulation -- 1. Introduction -- 2. Wind-Driven Circulation -- 2.1. Ekman Layer and Ekman Overturning Cells -- 2.2. Sverdrup Balance -- 2.3. Western Boundary Currents and Inertial Recirculation -- 2.4. Vertical Structure of the Wind-Driven Circulation -- 2.5. Role of Bottom Topography -- 3. Thermohaline Circulation -- 3.1. Energetics and Global Perspective -- 3.2. Role of the Southern Ocean and Relation to the Antarctic Circumpolar Current -- 3.3. Water Mass Formation -- 3.4. Three-Dimensional Structure of the THC -- 3.5. Feedbacks and Multiple Equilibria -- 3.6. Does the South Atlantic Determine the Stability of the THC? -- 4. Transient Behaviour of the Wind-Driven and Thermohaline Circulation -- 5. Discussion and Perspective -- Acknowledgments -- References -- Chapter 12: Ocean Surface Circulation -- 1. Observed Near-Surface Currents -- 1.1. Global Drifter Program and History of Lagrangian Observations -- 1.2. Mean Surface Circulation -- 2. Geostrophic Surface Circulation. , 2.1. High-Resolution Mean Dynamic Topography.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Book
    Book
    Kiel : Inst. für Meereskunde, Abt. Meeresphysik
    Keywords: Meereskunde ; SI-Einheiten
    Description / Table of Contents: Die Zusammenstellung zu den SI-Einheiten soll eine praktische Arbeitsgrundlage für die Verwendung dieser Einheiten in der Ozeanographie bereitstellen. Sie paßt die grundlegenden Vorschriften des SI-Systems (Système International d'Unités) und die vom UNESCO/ICES/SCOR/IAPSO-Ausschuß "Ozeanographische Tabelle und Standards" (JPOTS) erarbeiteten Regeln für die Anwendung in der Ozeanographie zusammen. Grundlagen sind der SUN Report (IAPSO, 1979), die IAPSO-Publication Scientifique No. 32, veröffentlicht bei der UNESCO (1985) und die Empfehlungen der genannten internationalen Meeresforschungsorganisationen zum "Praktischen Salzgehalt" und zur neuen Zustandsgleichung des Meerwassers (UNESCO, 1981, 1983). Außerdem werden Angaben zur neuen internationalen Temperaturskala gegeben (SAUNDERS, 1990). Der Bericht enthält ferner eine Zusammenfassung von Größen und Einheiten zur Strahlungsenergieübertragung im Meer. Die 3. Auflage wurde gegenüber der 2. Auflage vor allem durch Erläuterungen zu oft gebrauchten Bezeichnungen ergänzt. Bei den Strahlungsgrößen wurden einige Bezeichnungen entsprechend dem überwiegend üblichen Gebrauch verändert bzw. hinzugefügt, und einige Fehler wurden korrigiert.
    Type of Medium: Book
    Pages: 18 S , graph. Darst.
    Edition: 3. überarb. Aufl
    Series Statement: Berichte aus dem Institut für Meereskunde an der Christian-Albrechts-Universität Kiel 101
    Language: German , English
    Note: Text in dt. u. engl. Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Book
    Book
    Kiel : Inst. für Meereskunde, Abt. Meeresphysik
    Keywords: Report ; Dissertation ; Forschungsbericht ; Hochschulschrift
    Type of Medium: Book
    Pages: IV, 142 S. , Ill., graph. Darst., Kt.
    Series Statement: Berichte aus dem Institut für Meereskunde an der Christian-Albrechts-Universität Kiel 281
    Language: German
    Note: Literaturverz. S. 128 - 135 , Zugl.: Kiel, Univ., Diss., 1995
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: Forschungsbericht ; Hochschulschrift
    Description / Table of Contents: Das deutsche Forschungsschiff SONNE war während der Fahrt Nr 113 (TROPAC) vom 10 Oktober - 19 November 1996 im westlichen tropischen Pazifik im Einsatz. Das Untersuchungsgebiet lag im Östlichen Marianenbecken und im Östlichen Karolinenbecken. Das physikalisch/chemische Programm hatte zwei Schwerpunkte a) Untersuchungen zur Zirkulation von Antarktischem Zwischenwasser in der Bismarck- See und längs des Äquators zwischen 143° und 150°E und b) zur Struktur und zum Transport von unterem zirkumpolaren Tiefenwasser im Marianenbecken. (MOD)
    Type of Medium: Book
    Pages: 129 S , graph. Darst., Kt
    Series Statement: Berichte aus dem Institut für Meereskunde an der Christian-Albrechts-Universität Kiel 288
    Language: German
    Note: Förderkennzeichen BMBF 03G0113A
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Book
    Book
    Kiel : Inst. für Meereskunde, Abt. Meeresphysik
    Description / Table of Contents: Die Zusammenstellung zu den SI-Einheiten soll eine praktische Arbeitsgrundlage für die Verwendung dieser Einheiten in der Ozeanographie bereitstellen. Sie paßt die grundlegenden Vorschriften des SI-Systems (Système International d'Unités) und die vom UNESCO/ICES/SCOR/IAPSO-Ausschuß "Ozeanographische Tabelle und Standards" (JPOTS) erarbeiteten Regeln für die Anwendung in der Ozeanographie zusammen. Grundlagen sind der SUN Report (IAPSO, 1979), die IAPSO-Publication Scientifique No. 32, veröffentlicht bei der UNESCO (1985) und die Empfehlungen der genannten internationalen Meeresforschungsorganisationen zum "Praktischen Salzgehalt" und zur neuen Zustandsgleichung des Meerwassers (UNESCO, 1981, 1983). Außerdem werden Angaben zur neuen internationalen Temperaturskala gegeben (SAUNDERS, 1990). Der Bericht enthält ferner eine Zusammenfassung von Größen und Einheiten zur Strahlungsenergieübertragung im Meer. Die 3. Auflage wurde gegenüber der 2. Auflage vor allem durch Erläuterungen zu oft gebrauchten Bezeichnungen ergänzt. Bei den Strahlungsgrößen wurden einige Bezeichnungen entsprechend dem überwiegend üblichen Gebrauch verändert bzw. hinzugefügt, und einige Fehler wurden korrigiert.
    Type of Medium: Book
    Pages: 30 Bl , graph. Darst , 30 cm
    Series Statement: Berichte aus dem Institut für Meereskunde an der Christian-Albrechts-Universität Kiel 101
    Language: German
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 98 (C2). pp. 2485-2493.
    Publication Date: 2017-10-04
    Description: Three data types are compared in the low-current-velocity regime in the southeastern North Atlantic, between 12-degrees-N and 30-degrees-N, 29-degrees-W and 18-degrees-W: Geosat altimetric sea level and derived surface geostrophic velocities, shallow current meter velocities, and dynamic heights derived from hydrographic data from cruises 4, 6, and 9 of the research vessel Meteor. The four current meter daily time series, at depths around 200 m, were smoothed over 1 month; the altimetric geostrophic velocities were computed from sea surface slopes over 142 km every 17 days. The correlation coefficients between the current meter and altimetric geostrophic velocities range between 0.64 and 0.90 for the moorings near 29-degrees-N but between 0.32 and 0.71 for the two around 21-degrees-N; the associated rms discrepancies between the two measurement types range between 1.5 and 4.4 cm/s, which is 49% to 127% of the rms of the respective current meter time series. Dynamic heights relative to 1950 dbar for the months of November 1986 (d(M4)), November 1987 (d(M6)), and February 1989 (d(M9)) were computed from Meteor cruises 4, 6, and 9. Both dynamic heights and altimetric heights (h(M4), h(M6), h(M9)) were averaged over 1-degrees boxes for the duration of each cruise. Differences d(M4) - d(M6) and d(M9) - d(M6) were computed only at bins where at least one station from both cruises existed, Assuming that dynamic heights d in dynamic centimeters are equivalent to sea level h in centimeters, the standard deviation sigma of the differences ((h(M4) - h(M6)) - (d(M4) - d(M6))) and corresponding M9 - M6 values was 2.1 cm. This value (squared) is only 13% of the (5.8 cm)2 variance of the dynamic height differences and is indistinguishable from the 2.7- to 5.6-cm natural variability of sea level in the area expected between the times when the ship and the satellite sampled the ocean. The areally averaged discrepancy for M9 - M6 was only 0.7 cm, but the corresponding value for M4 - M6 was 5.2 cm. A systematic difference between the water vapor corrections used before and after July 1987 is responsible for the M4 - M6 difference. The average M4 - M6 discrepancy is only 0.1 cm using the Fleet Numerical Oceanography Center correction, with a standard deviation of 3.1 cm. In spite of the underlying differences in sampling and physics, including unknown barotropic components not included in our hydrographic dynamic heights, and in data errors, including water vapor, ionospheric, and orbital effects on the altimetry, consistent interannual changes of the mean sea level from the independently obtained altimetric and hydrographic data sets are obtained, and correlated seasonal changes in surface currents are observed with both altimetry and current meters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 93 (C7). pp. 8111-8118.
    Publication Date: 2017-09-26
    Description: The eastern part of the North Atlantic subtropical gyre is found in the region between the Azores and the Cape Verde Islands. A study of the gyre structure in the area east of 35°W between 8°N and 41°N is presented. The geostrophic flow field determined from historical temperature-salinity data sets by objective analysis indicates seasonal variations in shape but no significant changes in the magnitude of volume transports. The eastern part of the gyre has a larger east-west and smaller north-south extension in summer compared with the winter season. The center shifts by about 2° latitude to the south from winter to summer. Long-term temperature time series (6.5 years) from a mooring near the Azores are consistent with these results, showing always a consistent temperature increase at the beginning of the year which is apparently due to the displacement of the northeastern part of the gyre. A comparison between the mean flow fields and fields obtained from individual zonal sections indicates large deviations north and south of the gyre but small deviations within the gyre.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 97 (C1). pp. 703-715.
    Publication Date: 2017-09-26
    Description: The Guinea Dome is a permanent, quasi-stationary feature on the eastern side of the thermal ridge extending zonally across the tropical North Atlantic. The dome is a part of the large-scale near-surface flow fields associated with the North Equatorial Current, the North Equatorial Countercurrent and the North Equatorial Undercurrent. In the present study, historical and recently obtained hydrographic data are combined to investigate the thermohaline structure and geostrophic flow field in the vicinity of the dome. It is shown that the Guinea Dome exists throughout the year both in subthermocline and thermocline layers, that it has a corresponding cyclonic geostrophic flow, and that seasonal changes occur with respect to its vertical structure, horizontal extent, and position. The observational results are then compared with simulations from a general circulation model of the tropical Atlantic. A seven-year simulation forced by observed monthly winds is run to compute a monthly climatology. The model adequately simulates the Guinea Dome with respect to its structure, flow field, and seasonal variability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 98 (C2). pp. 2393-2406.
    Publication Date: 2017-09-26
    Description: An analysis is presented of geostrophic volume transport across a zonal line along 28-degrees-N in the eastern Atlantic. The data are from an array of five moorings with 200-km spacing carrying temperature sensors and one current meter each for 1 or 2 years. Transport changes in the main thermocline relative to a fixed depth level are obtained by the use of temperature-salinity relationships. The transport variability is simulated by two propagating waves with first-order baroclinic mode structure. Solutions exist with annual and semi-annual periods and zonal wavelengths of 100-200 km and 300 km, respectively. Assuming quasi-geostrophic dynamics and using results on the Reynolds stress, the dominating waves of annual and semi-annual period are found to propagate to the southwest, with 45-degrees-60-degrees and 25-degrees to the south off the westward direction, respectively. Wave solutions with a 90-day period and a zonal wavelength of about 300 km are interpreted as an effect of barotropic waves arising due to horizontal temperature inhomogeneity. The propagation is about +/-25-degrees off the westward direction. In general, good approximations are obtained with the propagating wave simulations in the western and central part of the array, while large differences occur between observation and simulation close to the Canary archipelago. Possible causes for these differences are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...