GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • John Wiley & Sons  (2)
  • AGU (American Geophysical Union)  (1)
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 36 . L02310.
    Publication Date: 2019-09-23
    Description: First long-period magnetotelluric investigations were conducted in early 2008 in northwestern Costa Rica, along a profile that extends from the coast of the Pacific Ocean, traverses the volcanic arc and ends currently at the Nicaraguan border. The aim of this study is to gain insight into the electrical resistivity structure and thus fluid distribution at the continental margin where the Cocos plate subducts beneath the Caribbean plate. Preliminary two-dimensional models map the only moderately resistive mafic/ultramafic complexes of the Nicoya Peninsula (resistivity of a few hundred Ωm), the conductive forearc and the backarc basins (several Ωm). Beneath the backarc basin the data image a poor conductor in the basement with a clear termination in the south, which may tentatively be interpreted as the Santa Elena Suture. The volcanic arc shows no pronounced anomaly at depth, but a moderate conductor underlies the backarc with a possible connection to the upper mantle. A conductor at deep-crustal levels in the forearc may reflect fluid release from the downgoing slab.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2010. This article is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 181 (2010): 997-1016, doi:10.1111/j.1365-246X.2010.04552.x.
    Description: In the 2005 TICOCAVA explosion seismology study in Costa Rica we observed crustal turning waves with a dominant frequency of ~10 Hz on a linear array of short-period seismometers from the Pacific Ocean to the Caribbean Sea. On one of the shot records, from Shot 21 in the backarc of the Cordillera Central, we also observed two seismic phases with an unusually high dominant frequency (~20 Hz). These two phases were recorded in the forearc region of central Costa Rica and arrived ~7 s apart and 30 to 40 s after the detonation of Shot 21. We considered the possibility that these secondary arrivals were produced by a local earthquake that may have happened during the active-source seismic experiment. Such high-frequency phases following Shot 21 were not recorded after Shots 22, 23, and 24, all in the backarc of Costa Rica, which might suggest that they were produced by some other source. However, earthquake dislocation models cannot produce seismic waves of such high frequency with significant amplitude. In addition, we would have expected to see more arrivals from such an earthquake on other seismic stations in central Costa Rica. We therefore investigate whether the high-frequency arrivals may be the result of a deep seismic reflection from the subducting Cocos plate. The timing of these phases is consistent with a shear wave from Shot 21 that was reflected as a compressional (SxP) and a shear (SxS) wave at the top of the subducting Cocos slab between 35 and 55 km depth. The shift in dominant frequency from ~10 Hz in the downgoing seismic wave to ~20 Hz in the reflected waves requires a particular seismic structure at the interface between the subducting slab and the forearc mantle in order to produce a substantial increase in reflection coefficients with frequency. The spectral amplitude characteristics of the SxP and SxS phases from Shot 21 are consistent with a very high Vp/Vs ratio of 6 in ~5 m thick, slab-parallel layers. This result suggests that a system of thin shear zones near the plate interface beneath the forearc is occupied by hydrous fluids under near-lithostatic conditions. The overpressured shear zone probably takes up fluids from the downgoing slab, and it may control the lower limit of the seismogenic zone.
    Description: This work was funded by the US National Science Foundation MARGINS programme.
    Keywords: Controlled source seismology ; Body waves ; Wave propagation ; Subduction zone processes ; Continental margins: convergent
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 14 (2013): 1087–1103, doi:10.1002/ggge.20079.
    Description: Island arcs are proposed to be essential building blocks for the crustal growth of continents; however, island arcs and continents are fundamentally different in bulk composition: mafic and felsic, respectively. The substrate upon which arcs are built (oceanic crust versus large igneous province) may have a strong influence on crustal genesis. We present results from an across-arc wide-angle seismic survey of the Costa Rican volcanic front which test the hypothesis that juvenile continental crust is actively forming at this location. Travel-time tomography constrains velocities in the upper arc to a depth of ~15 km where average velocities are 〈6.5 km/s. The upper 5 km of crust is constrained by velocities between 4.0 and 5.5 km/s, which likely represent sediments, volcaniclastics, flows, and small intrusions. Between 5 and 15 km depth, velocities increase slowly from 5.5 to 6.5 km/s. Crustal thickness and lower crustal velocities are roughly constrained by reflections from an inferred crust-mantle transition zone. Crustal thickness beneath the volcanic front in Costa Rica is ~40 km with best-fit average lower-crustal velocities between 6.8 and 7.1 km/s. Overall, velocities across the arc in central Costa Rica are at the high-velocity extreme of bulk continental crust velocities and are lower than modern island arc velocities, suggesting that continental compositions are created at this location. These data suggest that preexisting thick crust of the Caribbean Large Igneous Province has a measurable effect on bulk composition. This thickened arc crust may be a density filter for mafic material and thereby support differentiation toward continental compositions.
    Description: Funding was provided by the NSF-MARGINS and ODP programs, under NSF grant OCE-0405654 and project Nº 113- A4-408 from the University of Costa Rica.
    Description: 2013-10-29
    Keywords: Continental crust ; Island arc ; Seismic refraction ; Costa Rica
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...