GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (38)
  • GEOMAR Helmholtz-Zentrum für Ozeanforschung  (3)
  • Kiel : Universitätsbibliothek Kiel  (3)
  • 11
    Publication Date: 2019-08-06
    Description: Extension of the continental lithosphere leads to the formation of rift basins and ultimately may create passive continental margins. The mechanisms that operate during the early stage of crustal extension are still intensely debated. We present the results from coincident multichannel seismic and wide-angle seismic profiles that transect across the northern Tyrrhenian Sea Basin. The profiles cross the Corsica Basin (France) to the Latium Margin (Italy) where the early-rift stage of the basin is well preserved. We found two domains, each with a distinct tectonic style, heat flow and crustal thickness. One domain is the Corsica Basin in the west that formed before the main rift phase of the northern Tyrrhenian Sea opening (∼8–4 Ma). The second domain is rifted continental crust characterized by tilted blocks and half-graben structures in the central region and at the Latium Margin. These two domains are separated by a deep (∼10 km) sedimentary complex of the eastern portion of the Corsica Basin. Travel-time tomography of wide-angle seismic data reveals the crustal architecture and a subhorizontal 15–17 ± 1 km deep Moho discontinuity under the basin. To estimate the amount of horizontal extension we have identified the pre-, syn-, and post-tectonic sedimentary units and calculated the relative displacement of faults. We found that major faults initiated at angles of 45°–50° and that the rifted domain is horizontally stretched by a factor of β ∼ 1.3 (∼8–10 mm/a). The crust has been thinned from ∼24 to ∼17 km indicating a similar amount of extension (∼30%). The transect represents one of the best imaged early rifts and implies that the formation of crustal-scale detachments, or long-lived low-angle normal faults, is not a general feature that controls the rift initiation of continental crust. Other young rift basins, like the Gulf of Corinth, the Suez Rift or Lake Baikal, display features resembling the northern Tyrrhenian Basin, suggesting that half-graben formations and distributed homogeneous crustal thinning are a common feature during rift initiation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-04-04
    Description: The West Spitsbergen Current, which flows northward along the western Svalbard continental slope, transports warm and saline Atlantic water (AW) into the Arctic Ocean. A combined analysis of highresolution seismic images and hydrographic sections across this current has uncovered the oceanographic processes involved in horizontal and vertical mixing of AW. At the shelf break, where a strong horizontal temperature gradient exists east of the warmest AW, isopycnal interleaving of warm AW and surrounding colder waters is observed. Strong seismic reflections characterize these interleaving features, with a negative polarity reflection arising from an interface of warm water overlying colder water. A seismic-derived sound speed image reveals the extent and lateral continuity of such interleaving layers. There is evidence of obliquely aligned internal waves emanating from the slope at 450–500 m. They follow the predicted trajectory of internal S2 tidal waves and can promote vertical mixing between Atlantic and Arctic-origin waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    GEOMAR Helmholtz-Zentrum für Ozeanforschung
    In:  GEOMAR Helmholtz-Zentrum für Ozeanforschung, Kiel, Germany, 14 pp.
    Publication Date: 2019-04-10
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-04-10
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    GEOMAR Helmholtz-Zentrum für Ozeanforschung
    In:  GEOMAR Helmholtz-Zentrum für Ozeanforschung, Kiel, Germany, 16 pp.
    Publication Date: 2019-05-27
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-04-27
    Description: Mud volcanoes are seafloor expressions of focused fluid flow that are common in compressional tectonic settings. New high-resolution 3-D seismic data from the Mercator mud volcano (MMV) and an adjacent buried mud volcano (BMV) image the internal structure of the top 800 m of sediment at both mud volcanoes, revealing that both are linked and have been active episodically. The total volumes of extruded mud range between 0.15 and 0.35 km3 and 0.02–0.05 km3 for the MMV and the BMV, respectively. The pore water composition of surface sediment samples suggests that halokinesis has played an important role in the evolution of the mud volcanoes. We propose that erosion of the top of the Vernadsky Ridge that underlies the mud volcanoes activated salt movement, triggering deep migration of fluids, dissolution of salt, and sediment liquefaction and mobilization since the end of the Pliocene. Since beginning of mud volcanism in this area, the mud volcanoes erupted four times while there was only one reactivation of salt tectonics. This implies that there are other mechanisms that trigger mud eruptions. The stratigraphic relationship of mudflows from the MMV and BMV indicates that the BMV was triggered by the MMV eruptions. This may either be caused by loading-induced hydrofracturing within the BMV or due to a common feeder system for both mud volcanoes. This study shows that the mud volcanoes in the El Arraiche mud volcano field are long-lived features that erupt with intervals of several tens of thousands of years.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-11-07
    Description: New high-resolution multichannel seismic data GWADASEIS-2009 and JC45/46-2010 cruises; 72 and 60 channels, respectively) combined with previous data(AGUADOMAR-1999 and CARAVAL-2002; 6 and 24 channels, respectively) allow a detailed investigation of mass-wasting processes around the volcanic island of Montserrat in the Lesser Antilles. Seven submarine deposits have sources on the flanks of Montserrat, while three are related to the nearby Kahouanne submarine volcanoes. The most voluminous deposit (∼20 km3) within the Bouillante-Montserrat half-graben has not been described previously and is probably related to a flank instability of the Centre Hills Volcano on Montserrat, while other events are related to the younger South Soufrière Hills-Soufrière Hills volcanic complex. All deposits are located to the south or southeast of the island in an area delimited by faults of the Bouillante-Montserrat half-graben. They cover a large part of the southeast quarter of the surrounding seafloor (∼520 km2), with a total volume of ∼40 km3. Our observations suggest that the Bouillante-Montserrat half-graben exerts a control on the extent and propagation of the most voluminous deposits. We propose an interpretation for mass-wasting processes around Montserrat similar to what has happened for the southern islands of the Lesser Antilles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-04-27
    Description: The ongoing warming of bottom water in the Arctic region is anticipated to destabilize some of the gas hydrate present in shallow seafloor sediment, potentially causing the release of methane from dissociating hydrate into the ocean and the atmosphere. Ocean-bottom seismometer (OBS) experiments were conducted along the continental margin of western Svalbard to quantify the amount of methane present as hydrate or gas beneath the seabed. P- and S-wave velocities were modeled for five sites along the continental margin, using ray-trace forward modeling. Two southern sites were located in the vicinity of a 30 km long zone where methane gas bubbles escaping from the seafloor were observed during the cruise. The three remaining sites were located along an E-W orientated line in the north of the margin. At the deepest northern site, Vp anomalies indicate the presence of hydrate in the sediment immediately overlying a zone containing free gas up to 100-m thick. The acoustic impedance contrast between the two zones forms a bottom-simulating reflector (BSR) at approximately 195 m below the seabed. The two other sites within the gas hydrate stability zone (GHSZ) do not show the clear presence of a BSR or of gas hydrate. However, anomalously low Vp, indicating the presence of free gas, was modeled for both sites. The hydrate content was estimated from Vp and Vs, using effective-medium theory. At the deepest northern site, modeling suggests a pore-space hydrate concentration of 7–12%, if hydrate forms as part of a connected framework, and about 22% if it is pore-filling. At the two other northern sites, located between the deepest site and the landward limit of the GHSZ, we suggest that hydrate is present in the sediment as inclusions. Hydrate may be present in small quantities at these two sites (4–5%) of the pore space. The variation in lithology for the three sites indicated by high-resolution seismic profiles may control the distribution, concentration and formation of hydrate and free gas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 12 (7). Q07016.
    Publication Date: 2017-11-07
    Description: The nature of active deformation in the Gulf of Cadiz is important for developing a better understanding of the interplate tectonics and for revealing the source of the 1755 Great Lisbon earthquake. New, high-resolution 3-D seismic data reveal a classic pull-apart basin that has formed on an east striking fault in the Southern Lobe of the Gulf of Cadiz accretionary wedge. Geometrical relationships between an array of faults and associated basins show evidence for both dextral and sinistral shear sense in the Southern Lobe. Strike-slip faulting within the lobe may provide a link between frontal accretion at the deformation front and extension and gravitational sliding processes occurring further upslope. Inception of the strike-slip faults appears to accommodate deformation driven by spatially variant accretion or gravitational spreading rates, or both. This implies that active deformation on strike-slip faults in the Southern Lobe is unrelated to the proposed modern inception of a transform plate boundary through the Gulf of Cadiz and underscores the importance of detailed bathymetric analysis in understanding tectonic processes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2023-02-08
    Description: A site at the gas hydrate stability limit was investigated offshore northwestern Svalbard to study methane transport in sediment. The site was characterized by chemosynthetic communities (sulfur bacteria mats, tubeworms) and gas venting. Sediments were sampled with in‐situ porewater collectors and by gravity coring followed by analyses of porewater constituents, sediment and carbonate geochemistry, and microbial activity, taxonomy, and lipid biomarkers. Sulfide and alkalinity concentrations showed concentration maxima in near‐surface sediments at the bacterial mat and deeper maxima at the gas vent site. Sediments at the periphery of the chemosynthetic field were characterized by two sulfate‐methane transition zones (SMTZ) at ~204 and 45 cm depth, where activity maxima of microbial anaerobic oxidation of methane (AOM) with sulfate were found. Amplicon sequencing and lipid biomarker indicate that AOM at the SMTZs was mediated by ANME‐1 archaea. A 1D numerical transport reaction model suggests that the deeper SMTZ‐1 formed on centennial scale by vertical advection of methane, while the shallower SMTZ‐2 could only be reproduced by non‐vertical methane injections starting on decadal scale. Model results were supported by age distribution of authigenic carbonates, showing youngest carbonates within SMTZ‐2. We propose that non‐vertical methane injection was induced by increasing blockage of vertical transport or formation of sediment fractures. Our study further suggests that the methanotrophic response to the non‐vertical methane injection was commensurate with new methane supply. This finding provides new information about for the response time and efficiency of the benthic methane filter in environments with fluctuating methane transport.
    Type: Article , PeerReviewed
    Format: text
    Format: video
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...