GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ELSEVIER SCIENCE BV  (7)
  • Elsevier  (6)
  • Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung  (2)
  • INTER-RESEARCH  (2)
  • Kiel : Inst. für Meereskunde, Abt. Meeresbotanik  (2)
  • Springer International Publishing  (2)
  • AGU (American Geophysical Union)  (1)
Publisher
Language
  • 1
    Book
    Book
    Kiel : Inst. für Meereskunde, Abt. Meeresbotanik
    Type of Medium: Book
    Pages: V, 31 Bl , graph. Darst , 30 cm
    Edition: 2. ed
    Series Statement: Berichte aus dem Institut für Meereskunde an der Christian-Albrechts-Universität Kiel 177
    Language: English
    Note: 1. Aufl. als: Berichte aus dem Institut für Meereskunde an der Christian-Albrechts-Universität ; Nr. 149
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Biogeography Antarctica ; Biodiversity Antarctica ; Evolution (Biology) Antarctica ; Benthos Antarctica ; Antarktis ; Polarstern
    Type of Medium: Book
    Pages: IV, 120 S. , Ill., graph. Darst., Kt.
    Series Statement: Berichte zur Polar- und Meeresforschung 462
    DDC: 591.9989
    RVK:
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Oceanography Antarctic Ocean ; Antarktis ; Expedition ; Polarstern ; Fahrtbericht ; Antarktisforschung ; Expedition ; Polarstern
    Type of Medium: Book
    Pages: IV, 181 S. , Ill., graph. Darst.
    Series Statement: Berichte zur Polar- und Meeresforschung 402
    RVK:
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Book
    Book
    Kiel : Inst. für Meereskunde, Abt. Meeresbotanik
    Type of Medium: Book
    Pages: III, 76 S , 4 graph. Darst , 30 cm
    Series Statement: Berichte aus dem Institut für Meereskunde an der Christian-Albrechts-Universität Kiel 149
    Language: English
    Note: Literaturverz. S. 46 - 49
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-05-05
    Description: Correlating metal to calcium (Me/Ca) ratios of marine biogenic carbonates, such as bivalve shells, to environmental parameters has led to contradictory results. Biogenic carbonates represent complex composites of organic and inorganic phases. Some elements are incorporated preferentially into organic phases, and others are incorporated into inorganic phases. Chemical sample pretreatment to remove the organic matrix prior to trace element analysis may increase the applicability of the investigated proxy relationship, though its efficiency and side effects remain questionable. We treated inorganic calcium carbonate and bivalve shell powder (Arctica islandica) with eight different chemical treatments including H2O2, NaOH, NaOCl, and acetone and analyzed the effects on (1) Me/Ca ratios (Sr/Ca, Mg/Ca, Ba/Ca, and Mn/Ca), (2) organic matter (≈N) content, and (3) mineralogical composition of the calcium carbonate. The different treatments (1) cause element and treatment specific changes of Me/Ca ratios, (2) vary in their efficiency to remove organic matter, and (3) can even alter the phase composition of the calcium carbonate (e.g., formation of Ca(OH)2 during NaOH treatment). Among all examined treatments there were none without any side effects. In addition, certain Me/Ca changes we observed upon chemical treatment contradict our expectations that lattice-bound elements (Sr and Ba) should not be affected, whereas non-lattice-bound elements (Mg and Mn) should decrease upon removal of the organic matrix. For instance, we observe that NaOCl treatment did not alter Sr/Ca ratios but caused unexpected changes of the Mg/Ca ratios. The latter demonstrates that the buildup of complex biogenic composites like the shell of Arctica islandica are still poorly understood.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Experimental Marine Biology and Ecology, 117 (3). pp. 271-278.
    Publication Date: 2018-03-21
    Description: In ecological studies, especially in those dealing with energy circulation in nature, determinations of the energy content of organisms are inevitable. Energy determinations are, however, laborious and time-consuming. Average conversion factors based on different species form various areas and seasons may often be a shortcut for overcoming this problem. To establish general energy conversion factors for aquatic invertebrate groups, we used 376 values of J · mg−1 DW and 255 values of J · mg−1 AFDW, representing 308 and 229 species, respectively. The dry-weight-to-energy factors were highly variable both within and between taxonomic groups, e.g.: Porifera, 6.1 J · mg−1 DW; insect larvae, 22.4 J · mg−1 DW (median values). The energy-conversion factors related to AFDW showed a much smaller dispersion with a minimum median value of 19.7 J · mg−1 AFDW (Ascidiacea) and a maximum of 23.8 J · mg−1 AFDW (insect larvae). Within taxonomic groups, the 95% confidence intervals (AFDW) were only a few percent of the median values. The use of energy-conversion factors based on AFDW is preferable due to their lower dispersion. For aquatic macrobenthic invertebrates, a general conversion factor of 23 J · mg−1 AFDW can be used.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-02-05
    Description: Euphausiids constitute a major biomass component in shelf ecosystems and play a fundamental role in the rapid vertical transport of carbon from the ocean surface to the deeper layers during their daily vertical migration (DVM). DVM depth and migration patterns depend on oceanographic conditions with respect to temperature, light and oxygen availability at depth, factors that are highly dependent on season in most marine regions. Here we introduce a global krill respiration ANN (artificial neural network) model including the effect of latitude (LAT), the day of the year (DoY), and the number of daylight hours (DLh), in addition to the basal variables that determine ectothermal oxygen consumption (temperature, body mass and depth). The newly implemented parameters link space and time in terms of season and photoperiod to krill respiration. The ANN model showed a better fit (r2 = 0.780) when DLh and LAT were included, indicating a decrease in respiration with increasing LAT and decreasing DLh. We therefore propose DLh as a potential variable to consider when building physiological models for both hemispheres. For single Euphausiid species investigated in a large range of DLh and DoY, we also tested the standard respiration rate for seasonality with Multiple Linear Regression (MLR) and General Additive model (GAM). GAM successfully integrated DLh (r2 = 0.563) and DoY (r2 = 0.572) effects on respiration rates of the Antarctic krill, Euphausia superba, yielding the minimum metabolic activity in mid-June and the maximum at the end of December. We could not detect DLh or DoY effects in the North Pacific krill Euphausia pacifica, and our findings for the North Atlantic krill Meganyctiphanes norvegica remained inconclusive because of insufficient seasonal data coverage. We strongly encourage comparative respiration measurements of worldwide Euphausiid key species at different seasons to improve accuracy in ecosystem modeling.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-16
    Description: Euphausiids constitute a major biomass component in shelf ecosystems and play a fundamental role in the rapid vertical transport of carbon from the ocean surface to the deeper layers during their daily vertical migration (DVM). DVM depth and migration patterns depend on oceanographic conditions with respect to temperature, light and oxygen availability at depth, factors that are highly dependent on season in most marine regions. Here we introduce a global krill respiration ANN (Artificial Neural Network) model including the effect of latitude (LAT), the day of the year (DoY), and the number of daylight hours (DLh), in addition to the basal variables that determine ectothermal oxygen consumption (temperature, body mass and depth). The newly implemented parameters link space and time in terms of season and photoperiod to krill respiration. The ANN model showed a better fit (r2=0.780) when DLh and LAT were included, indicating a decrease in respiration with increasing LAT and decreasing DLh. We therefore propose DLh as a potential variable to consider when building physiological models for both hemispheres. For single Euphausiid species investigated in a large range of DLh and DoY, we also tested the standard respiration rate for seasonality with Multiple Linear Regression (MLR) and General Additive model (GAM). GAM successfully integrated DLh (r2= 0.563) and DoY (r2= 0.572) effects on respiration rates of the Antarctic krill, Euphausia superba, yielding the minimum metabolic activity in mid-June and the maximum at the end of December. We could not detect DLh or DoY effects in the North Pacific krill Euphausia pacifica, and our findings for the North Atlantic krill Meganyctiphanes norvegica remained inconclusive because of insufficient seasonal data coverage. We strongly encourage comparative respiration measurements of worldwide Euphausiid key species at different seasons to improve accuracy in ecosystem modelling.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-06-08
    Description: At the end of their operational life offshore wind farms need to be decommissioned. Up to date only few offshore wind farms were decommissioned, so there is a lack of experience and knowledge and decommissioning processes are largely unknown. Also, relevant stakeholders that might interfere with the decommissioning project are poorly investigated. As source of renewable energy, offshore wind farm decommissioning should be sustainable. This paper outlines a practical concept of integrating the three approaches for a sustainable decommissioning of offshore wind farms. It comprises a stakeholder approach, where relevant stakeholders are identified and analysed, a sustainability approach, in which objectives for sustainable offshore wind farm decommissioning are defined, and a process approach, including the selection, documentation and parametrization of decommissioning processes. The theoretical concept of the integration of the three approaches is outlined first. Thereafter the concept is applied on a case study of offshore wind farm decommissioning.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-02-15
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...