GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU  (1)
  • Woods Hole Oceanographic Institution  (1)
  • 1
    Publication Date: 2020-07-23
    Description: Application of biogeochemical models to the study of marine ecosystems is pervasive, yet objective quantification of these models' performance is rare. Here, 12 lower trophic level models of varying complexity are objectively assessed in two distinct regions (equatorial Pacific and Arabian Sea). Each model was run within an identical one-dimensional physical framework. A consistent variational adjoint implementation assimilating chlorophyll-a, nitrate, export, and primary productivity was applied and the same metrics were used to assess model skill. Experiments were performed in which data were assimilated from each site individually and from both sites simultaneously. A cross-validation experiment was also conducted whereby data were assimilated from one site and the resulting optimal parameters were used to generate a simulation for the second site. When a single pelagic regime is considered, the simplest models fit the data as well as those with multiple phytoplankton functional groups. However, those with multiple phytoplankton functional groups produced lower misfits when the models are required to simulate both regimes using identical parameter values. The cross-validation experiments revealed that as long as only a few key biogeochemical parameters were optimized, the models with greater phytoplankton complexity were generally more portable. Furthermore, models with multiple zooplankton compartments did not necessarily outperform models with single zooplankton compartments, even when zooplankton biomass data are assimilated. Finally, even when different models produced similar least squares model-data misfits, they often did so via very different element flow pathways, highlighting the need for more comprehensive data sets that uniquely constrain these pathways.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: A transatlantic CTD/ADCP section nominally located at 11°N was carried out in March 1989. In this paper relative geostrophic velocities are computed from these data via the thermal wind balance, with reference level choices based primarly on water mass distributions. A brief overview of the meridional circulation of the upper waters resulting from these analysis techniques is presented. Schematic circulation patterns of the NADW and AAW are also presented. In both the western and eastern basins these waters are characterized by cyclonic recirculation gyres. A paricularly notable result of the deep western basin analysis is the negligible net flow of middle NADW. Although the horizontal circulation patterns described in this study agree well with results from many previous studies, the meridional overturning cell and net heat flux are considerably lower, while the net freshwater flux is slightly higher than previous estimates. These discrepancies may be attbuted to: (1) differences in methodologies, (2) the increased resolution of this section, and (3) temporal (including decadal, synoptic, and most importantly, seasonal) variability.
    Description: Funding was provided by the National Science Foundation through Grant Nos. OCE-8716314 and OCE-9101636 and the Office of Naval Research through the American Society for Engineering Education.
    Keywords: Meridional circulation ; Heat transport-meridional
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report , Thesis
    Format: 3857032 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...