GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nature Publishing Group  (2)
  • AGU  (1)
  • Copernicus Publications (EGU)  (1)
  • 1
    Publication Date: 2019-09-23
    Description: Over much of the ocean’s surface, productivity and growth are limited by a scarcity of bioavailable nitrogen. Sedimentary δ15N records spanning the last deglaciation suggest marked shifts in the nitrogen cycle during this time, but the quantification of these changes has been hindered by the complexity of nitrogen isotope cycling. Here we present a database of δ15N in sediments throughout the world’s oceans, including 2,329 modern seafloor samples, and 76 timeseries spanning the past 30,000 years. We show that the δ15N values of modern seafloor sediments are consistent with values predicted by our knowledge of nitrogen cycling in the water column. Despite many local deglacial changes, the globally averaged δ15N values of sinking organic matter were similar during the Last Glacial Maximum and Early Holocene. Considering the global isotopic mass balance, we explain these observations with the following deglacial history of nitrogen inventory processes. During the Last Glacial Maximum, the nitrogen cycle was near steady state. During the deglaciation, denitrification in the pelagic water column accelerated. The flooding of continental shelves subsequently increased denitrification at the seafloor, and denitrification reached near steady-state conditions again in the Early Holocene. We use a recent parameterization of seafloor denitrification to estimate a 30–120% increase in benthic denitrification between 15,000 and 8,000 years ago. Based on the similarity of globally averaged δ15N values during the Last Glacial Maximum and Early Holocene, we infer that pelagic denitrification must have increased by a similar amount between the two steady states.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-26
    Description: Coastal seas may account for more than 75 % of global oceanic methane emissions. There, methane is mainly produced microbially in anoxic sediments from where it can escape to the overlying water column. Aerobic methane oxidation (MOx) in the water column acts as a biological filter reducing the amount of methane that eventually evades to the atmosphere. The efficiency of the MOx filter is potentially controlled by the availability of dissolved methane and oxygen, as well as temperature, salinity, and hydrographic dynamics, and all of these factors undergo strong temporal fluctuations in coastal ecosystems. In order to elucidate the key environmental controls, specifically the effect of oxygen availability, on MOx in a seasonally stratified and hypoxic coastal marine setting, we conducted a 2-year time-series study with measurements of MOx and physico-chemical water column parameters in a coastal inlet in the southwestern Baltic Sea (Eckernförde Bay). We found that MOx rates always increased toward the seafloor, but were not directly linked to methane concentrations. MOx exhibited a strong seasonal variability, with maximum rates (up to 11.6 nmol l−1 d−1) during summer stratification when oxygen concentrations were lowest and bottom-water temperatures were highest. Under these conditions, 70–95 % of the sediment-released methane was oxidized, whereas only 40–60 % were consumed during the mixed and oxygenated periods. Laboratory experiments with manipulated oxygen concentrations in the range of 0.2–220 µmol l−1 revealed a sub-micromolar oxygen-optimum for MOx at the study site. In contrast, the fraction of methane-carbon incorporation into the bacterial biomass (compared to the total amount of oxidised methane) was up to 38-fold higher at saturated oxygen concentrations, suggesting a different partitioning of catabolic and anabolic processes under oxygen-replete and oxygen-starved conditions, respectively. Our results underscore the importance of MOx in mitigating methane emission from coastal waters and indicate an organism-level adaptation of the water column methanotrophs to hypoxic conditions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-07-23
    Description: The subtropical northeast Atlantic has previously been identified as a marine environment with an apparent imbalance between low nitrate supply to the surface and concurrent high export production. To better constrain the sources and fluxes of mixed layer nitrate and to assess the potential role of N2 fixation in providing new nitrogen (N), we investigated the depth distribution of nitrate δ15N and δ18O at six stations across the Azores Front in the NE Atlantic. In addition, we measured the δ15N of dissolved organic N (DON) in surface waters and of sinking particulate N collected in sediment traps at 2000 m depth between 2003 and 2005 at Station KIEL276. The nitrate isotope profiles at the majority of the hydrographic stations displayed a decrease in the δ15N from depth toward low-nitrate surface waters, concomitant with an increase in δ18O. Given that nitrate uptake by phytoplankton leads to a proportional increase in nitrate δ15N and δ18O, the observed surface water nitrate isotope anomalies (Δ(15;18) up to −6‰) indicate that nitrate assimilation is not the sole process controlling the isotopic composition of nitrate in the photic zone and implicate a significant addition of newly fixed N that is remineralized in surface and subsurface waters. Both the concentration of DON and its δ15N in surface water were spatially invariant, showing mean values of 4.7 ± 0.5 μmol L−1 and 2.6 ± 0.4‰ (n = 35), respectively, supporting the conjecture of a mostly recalcitrant DON pool. The weighted biannual mean δ15N of sinking particulate N (1.8 ± 0.8‰, n = 33) was low with respect to thermocline nitrate. The anomalous dual nitrate isotope signatures together with the low δ15N of export production and elevated nitrate-to-phosphate ratios in surface and subsurface waters strongly suggest that N2 fixation represents a substantive source of N in this part of the subtropical northeast Atlantic. Simple isotope mass balance suggests that, locally, N2 fixation supplies between 56 and 259 mmol N m−2 a−1 for phytoplankton growth in the photic zone, accounting for up to ∼40% of the estimated export production.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 8 (2017): 1835, doi:10.1038/s41467-017-01776-x.
    Description: Subterranean estuaries extend inland into density-stratified coastal carbonate aquifers containing a surprising diversity of endemic animals (mostly crustaceans) within a highly oligotrophic habitat. How complex ecosystems (termed anchialine) thrive in this globally distributed, cryptic environment is poorly understood. Here, we demonstrate that a microbial loop shuttles methane and dissolved organic carbon (DOC) to higher trophic levels of the anchialine food web in the Yucatan Peninsula (Mexico). Methane and DOC production and consumption within the coastal groundwater correspond with a microbial community capable of methanotrophy, heterotrophy, and chemoautotrophy, based on characterization by 16S rRNA gene amplicon sequencing and respiratory quinone composition. Fatty acid and bulk stable carbon isotope values of cave-adapted shrimp suggest that carbon from methanotrophic bacteria comprises 21% of their diet, on average. These findings reveal a heretofore unrecognized subterranean methane sink and contribute to our understanding of the carbon cycle and ecosystem function of karst subterranean estuaries.
    Description: Funding for T.M.I. and D.B. was provided by TAMU-CONACYT (project no: 2015-049). D.B. was supported by Research-in-Residence program (NSF award #1137336, Inter-University Training in Continental-scale Ecology), Cave Research Foundation Graduate Student Grant, Cave Conservancy Foundation PhD Fellowship, Ralph W. Stone Fellowship (National Speleological Society), Grants-in-Aid of Graduate Student Research Award (Texas Sea Grant College Program), and Boost Fellowship (Texas A&M University at Galveston). Additional financial support was provided by NSF DEB-1257424 (M.B.L. and M.C.L.), the Postdoctoral Program at Woods Hole Oceanographic Institution and U.S. Geological Survey (K.W.B.).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...