GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Description: Shallow gas migration along hydrocarbon wells constitutes a potential methane emission pathway that currently is not recognized in any regulatory framework or greenhouse gas inventory. Recently, the first methane emission measurements at three abandoned offshore wells in the Central North Sea (CNS) were conducted showing that considerable amounts of biogenic methane originating from shallow gas accumulations in the overburden of deep reservoirs were released by the boreholes. Here, we identify numerous wells poking through shallow gas pockets in 3D seismic data of the CNS indicating that about one third of the wells may leak, potentially releasing a total of 3-17 kt of methane per year into the North Sea. This poses a significant contribution to the North Sea methane budget. A large fraction of this gas (~42 %) may reach the atmosphere via direct bubble transport (0-2 kt yr-1) and via diffusive exchange of methane dissolving in the surface mixed layer (1-5 kt yr-1), as indicated by numerical modeling. In the North Sea and in other hydrocarbon-prolific provinces of the world shallow gas pockets are frequently observed in the sedimentary overburden and aggregate leakages along the numerous wells drilled in those areas may be significant.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-12-19
    Description: A recently developed deep-sea telemetry (DST), based on the digital subscriber line technology, has been successfully used to equip various remotely operated underwater devices with online video control, high-speed data transmission, and power supply via standard coaxial cables with a length of up to 8,000 m. The system has been applied to study and sample the extreme saline and high-temperature conditions of the Red Sea brines and to detect gas emissions at abandoned wells in the North Sea. In both applications, it has been integrated into a water sampler rosette, providing live video streaming and internal recording from commercial high-definition and analog cameras as well as simultaneous data transmission from a suite of sensors to record and sample the distribution of dissolved gases (e.g., methane and CO2) and oceanographic parameters. This combination makes an ideal survey and monitoring tool for leak detection even in harsh subsea environments. The DST has also been used to deploy landers at selected spots at the seafloor. In combination with remotely operated vehicle (ROV) deployments, this technique can be used to increase significantly the efficiency of ROV bottom time during deep-water operations. The high quality of the video transmission, ease of operation, and versatile application make this novel system superior to existing conventional analog transmission systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Marine Technology Society
    In:  Marine Technology Society Journal, 47 (3). pp. 27-36.
    Publication Date: 2018-09-18
    Description: Recently developed methane sensors, based on infrared (IR) absorption technology, were successfully utilized for subsea methane release measurements. Long-term investigation of methane emissions (fluid flux determination) from natural methane seeps in the Hikurangi Margin offshore New Zealand were performed by using seafloor lander technology. Small centimeter-sized seep areas could be sampled at the seafloor by video-guided lander deployment. In situ sensor measurements of dissolved methane in seawater could be correlated with methane concentrations measured in discrete water samples after lander recovery. High backscatter flares determined by lander-based Acoustic Doppler Current Profiler (ADCP) measurement indicate bubble release from the seafloor. Highest methane concentrations determined by the IR sensor coincided with periods of high ADCP backscatter signals. The high fluid release cannot be correlated with tidal changes only. However, this correlation is possible with variability in spatial bubble release, sudden outbursts, and tidal changes in more quiescent seepage phases. A recently developed IR sensor (2,000 m depth-rated) with a detection limit for methane of about 1 ppm showed good linearity in the tested concentration range and an acceptable equilibration time of 10 min. The sensor was successfully operated offshore Santa Barbara by a small work-class ROV at a natural methane seep (Farrar Seep). High background methane concentration of 50 nmol L−1 was observed in the coastal water, which increases up to 560 nmol L−1 in dissolved methane plumes south of the seepage area. ROV- and lander-based sensor deployments have proven the applicability of IR sensor technology for the determination of subsea methane release rates and plume distribution. The wide concentration range, low detection limit, and its robust detection unit enable this technology for both subsea leak detection and oceanographic trace gas investigations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Marine Technology Society
    In:  Marine Technology Society Journal, 49 (1). pp. 19-30.
    Publication Date: 2017-12-19
    Description: During RV Poseidon cruise POS469 (May 2014), the distribution of pCO2 in the near field of submarine volcanic gas flares in shallow water depths down to 50 m below sea level was continuously monitored using three different and independent methodologies. In situ nondispersive infrared (NDIR) spectrometry, pH measurements, and onboard membrane inlet mass spectrometry (MIMS) were used to determine the fate of rising CO2 bubbles and the dissolved CO2 plume patterns in a 300 × 400-m working area. The in situ sensor carrier platform, a towed video-controlled water sampling rosette, equipped with CTD sensors, guaranteed excellent ground truthing of seafloor characteristics and bubble discharge. Sensor data and nearseafloor observations indicated that the gas bubbles (〈9 mm in diameter, 〉97 vol.% of CO2) dissolved very rapidly within the first 10 m above seafloor. Bottom water masses enriched with pCO2 (up to 1,100 μatm) show low pH values (up to 7.80) and tend to spread rather downslope west than following the measured weak current in SSE-SSW direction. The 3-D evaluation of pCO2 plume is a valuable tool to backtrace the origin of CO2 leakage when compared with local current regimes, water column CTD data, and seafloor bathymetry. Seep sites offshore Panarea can be used for studying CO2 leakage behavior and testing measuring strategies in shallow waters. Moreover, this area is a naturally designed laboratory to improve existing physicochemical and oceanographic transport models for subsea CO2 leakage.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-31
    Description: Carbon dioxide (CO2) capture and storage (CCS) has been discussed as a potentially significant mitigation option for the ongoing climate warming. Natural CO2 release sites serve as natural laboratories to study subsea CO2 leakage in order to identify suitable analytical methods and numerical models to develop best-practice procedures for the monitoring of subseabed storage sites. We present a new model of bubble (plume) dynamics, advection-dispersion of dissolved CO2, and carbonate chemistry. The focus is on a medium-sized CO2 release from 294 identified small point sources around Panarea Island (South-East Tyrrhenian Sea, Aeolian Islands, Italy) in water depths of about 40–50 m. This study evaluates how multiple CO2 seep sites generate a temporally variable plume of dissolved CO2. The model also allows the overall flow rate of CO2 to be estimated based on field measurements of pH. Simulations indicate a release of ∼6900 t y–1 of CO2 for the investigated area and highlight an important role of seeps located at 〉20 m water depth in the carbon budget of the Panarea offshore gas release system. This new transport-reaction model provides a framework for understanding potential future leaks from CO2 storage sites.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...