GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 21
    Publication Date: 2023-02-08
    Description: Highlights • Combining porewater geochemistry, geochemical modeling and subsurface geophysical data in order to understand the fluid flow system of Kerch seep area. • This seep area is not in steady state. • Methane transport is in the form of gas bubbles not porewater advection. • High surface temperatures are the result of hydrate formation and not an indication for elevated geothermal gradients. • Modeling says this seep is young (〈500 years old). Abstract High-resolution 3D seismic data in combination with deep-towed sidescan sonar data and porewater analysis give insights into the seafloor expression and the plumbing system of the actively gas emitting Kerch seep area, which is located in the northeastern Black Sea in around 900 m water depth, i.e. well within the gas hydrate stability zone (GHSZ). Our analysis shows that the Kerch seep consists of three closely spaced but individual seeps above a paleo-channel-levee system of the Don Kuban deep-sea fan. We show that mounded seep morphology results from sediment up-doming due to gas overpressure. Each of the seeps hosts its own gas pocket underneath the domes which are fed with methane of predominantly microbial origin along narrow pipes through the GHSZ. Methane transport occurs dominantly in the form of gas bubbles decoupled from fluid advection. Elevated sediment temperatures of up to 0.3 °C above background values are most likely the result of gas hydrate formation within the uppermost 10 m of the sediment column. Compared to other seeps occurring within the GHSZ in the Black Sea overall only scarce gas indications are present in geoacoustic and geophysical data. Transport-reaction modeling suggests that the Kerch seep is a young seep far from steady state and probably not more than 500 years old.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2023-02-08
    Description: Highlights • Total amount of generated biogenic methane is estimated at ~3100 Gt. • Total amount of generated thermogenic methane is estimated at ~1,560 Gt. • The Maykop formation is partially productive in the central basin and not yet fully productive towards the basin peripherals. A new numerical model reconstructing the depositional history (98–0 Ma) of the Western Black Sea sub-basin is presented. The model accounts for changing boundary conditions (i.e. water depth, bottom water temperature, heat flow evolution over time) and estimates the rates and total amounts of the in-situ biogenic methane generation and thermally-driven organic matter maturation in the source rocks. The overall thermogenic and biogenic gas generation predicted by the model is estimated at ~1560 Gt and ~3100 Gt, respectively.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2023-02-08
    Description: Highlights • Physical properties obtained from core and log data at the Danube deep sea fan are reported. • Core-log-seismic integration defines stratigraphic framework at the S2 channel. • All data suggest no gas hydrate is present at drill sites within uncertainties of methods employed. Abstract Drilling, coring, and geophysical logging were performed with the MARUM-MeBo200 seafloor drilling rig to investigate gas hydrate occurrences of the Danube deep sea fan, off Romania, Black Sea. Three sites within a channel-levee complex were investigated. Geophysical log data of P-wave velocity, electrical resistivity, and spectral gamma ray are combined with core-derived physical properties of porosity, magnetic susceptibility, and bulk density. Core- and log physical property data are used to define a time-depth conversion by synthetic seismogram modeling, which is then used to interpret the seismic data. Individual polarity reversed reflectors within the stratigraphic column drilled are linked to reduction in P-wave velocity and bulk density. Those reflectors (and associated reflection packages) are accompanied by distinct and systematic changes in sediment porosity, magnetic susceptibility, and electrical resistivity. Overall, the sediments at drill site GeoB22605 (MeBo-17) represent the younger (upper) levee sequence of the channel, that has been eroded at drill site GeoB22603 (MeBo-16). Splicing seismic data across the channel from the East (MeBo-16) to the West (MeBo-17) demonstrates the continuation of reflectors underneath the channel. The upper ∼50 m below seafloor (mbsf) at site MeBo-16 do not stratigraphically belong to the same sequence of the (deeper) levee-deposits. Above the marked erosional unconformity, sediments at Site MeBo-16 are likely derived by a mixture of repeated slump-events (identified as seismically transparent units) interbedded with hemi-pelagic sedimentation. Similarly, sediments within the upper ∼20 mbsf at Site MeBo-17 are not stratigraphically the same levee-deposits, but are derived by a mixture of slump-events (also seen in the marked seafloor amphitheatre architecture of a large failure complex extending further upslope) and hemi-pelagic sedimentation. All observations combined show that the seismically observed stratigraphic pattern represents a reflectivity sequence mostly driven by variations in density (porosity) and correspondingly by changes in P-wave velocity and electrical resistivity. All observations from the geophysical log- and core, as well as geochemical data do show no evidence for the presence of any significant gas hydrates within the drilled/cored sequences.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2023-02-08
    Description: Highlights • The SUGAR project has developed and tested various methods for gas production from marine gas hydrates from micro to field scale. • Numerical simulations improved the understanding of processes on molecular to reservoir scale. • Depressurization is a promising technology for exploiting gas hydrate deposits in the Danube Delta. • The injection of CO2 or CO2–N2 is not a suitable method for the exploitation of gas hydrate deposits in the Danube Delta. Abstract One important scientific objective of the national research project SUGAR – Submarine Gas Hydrate Reservoirs was the development, improvement, and test of innovative concepts for the production of methane from natural gas hydrate reservoirs. Therefore, different production methods, such as the thermal stimulation using in situ combustion, the chemical stimulation via injection of CO2 as a gaseous, liquid or supercritical phase and depressurization were tested alone or in combination at different scales. In the laboratory experiments these ranged from pore and hydrate grain scale to 425-L reactor volume, whereas numerical models were applied to describe the related processes from molecular to reservoir scale. In addition, the numerical simulations also evaluated the feasibility and efficiency of the application of these methods in selected areas, such as the Danube Paleodelta in the Black Sea, addressing the two dominant methane hydrate reservoir settings, buried channel-levee and turbidite systems. It turned out, that the injection of CO2 or a CO2–N2 gas mixture is not applicable for the Danube Paleodelta in the Black Sea, because the local pressure and temperature conditions are too close to the equilibrium conditions of both, the CO2 hydrate and a CO2–N2 mixed hydrate stability fields. Experiments using thermal stimulation and depressurization showed promising results but also some issues, such as sufficient heat transfer. In summary it can be said that the applicability and efficiency of each method has to be proven for each specific hydrate reservoir conditions. Based on the results obtained by numerical simulations the most promising and safe method for the production of CH4 from hydrate bearing sediments in the Danube Paleodelta would be the depressurization technique. This study summarizes the main experimental and modeling results.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2023-02-08
    Description: Highlights • The effects of the combined method on HBS geomechanical properties were examined. • Mechanical behavior depended on dissociation ratios and GH saturations. • Mechanical strength of the replaced HBSs was significantly recovered. • The combination of depressurization and replacement increased total CH4 recovery. • Optimum replacement occurred at a dissociation ratio of 20% with CO2 injection. Abstract This study analyzed the potential effects of gas hydrate (GH) exploitation on the geomechanical properties of hydrate-bearing sediment (HBS) by examining the combined effects of depressurization and CO2 injection using triaxial compression tests. The stress-strain behavior of the initial CH4 HBS showed strong hardening-softening characteristics and high peak strength, whereas milder hardening-softening behavior and reduced peak strength were observed after partial (20, 40, 60, and 80%) or complete GH dissociation (100%), indicating that the mechanical behavior clearly depended on dissociation ratios and GH saturations. In response to CO2 injection in partially dissociated HBS, subsequent CH4–CO2 hydrate exchange, and secondary CO2 hydrate formation, the mechanical strength of the replaced HBS recovered significantly, and stress-strain characteristics were similar to that of the 20% dissociated CH4 HBS. Although total CH4 recovery was increased by the combination of depressurization and replacement, optimum recovery was found at a dissociation ratio of 20% followed by replacement because production by replacement decreased as the dissociation ratio increased. These results contribute to the understanding of how depressurization and CO2 injection schemes may be combined to optimize energy recovery and CO2 sequestration. In particular, this research demonstrates that CH4–CO2 hydrate exchange and secondary GH formation are suitable methods for controlling and maintaining the mechanical stability of HBSs.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2023-02-08
    Description: Highlights • MeBo drilling in Danube fan down to 147 m recovered limnic to marine deposits. • Molecular and stable isotope characterization of light hydrocarbons, CO2, and H2O. • H and O isotopic compositions of pore water reflect paleoclimate variations. • Isotope relations prove microbial carbonate reduction as major methanogenic pathway. • Control of δ2H–CH4 by δ2H–H2O may lead to misinterpretation of methanogenic paths. Abstract We report on the geochemistry of light hydrocarbons and pore water in sediments down to 147 m below seafloor (mbsf), at two sites within the gas hydrate stability field of the Danube deep-sea fan, Black Sea. Sediments were drilled with MARUM-MeBo200 and comprise the transition from limnic to the recent marine stage. Stable C/N ratios (mean 5.1 and 5.6) and δ13C-Corg values (mean −25.8‰ V-PDB) suggest relatively uniform bulk organic matter compositions. In contrast, pore water δ2H and δ18O values varied considerably from approx. −120‰ to −30‰ V-SMOW and from −15‰ to −3‰ V-SMOW, respectively. These data pairs plot close to the ‘Global Meteoric Water Line’ and indicate paleo temperature variations. Depletions of pore water in 2H and 18O below 40 mbsf indicate low temperatures and likely reflect conditions during (the) last glacial period(s). Methane was much more abundant than the only other hydrocarbons found in notable concentrations, ethane and propane ((C1/(C2+C3) ≥20,000). Relatively constant δ13C–CH4 (~−70‰ V-PDB) and δ13C–C2H6 (~−52‰ V-PDB) values with depth indicate that methane and ethane are predominantly of microbial origin and that their formation was not limited by carbon availability. In contrast, δ2H–CH4 values varied in a large range (approx. −310 to −240‰ V-SMOW) with depth and positively correlated with trends observed for δ2H–H2O. Isotope separations (Δδ13C(CH4–CO2), Δδ2H(CH4–H2O)) substantiate that microbial carbonate reduction (CR) is the prevalent methanogenic pathway throughout the sediments irrespective of their geochemical history. Remarkably, in δ13C–CH4 – δ2H–CH4 diagrams widely used, samples characterized by δ2H–CH4 values more negative than approx. −250‰ plot out of the field assigned for pure CR. We conclude that assignments of microbial methanogenic pathways based on classical interpretations of δ13C–CH4 – δ2H–CH4 pairs can lead to misinterpretations, as severe 2H-depletions of methane formed through microbial CR can result from 2H-depletions of the pore water generated during low-temperature climatic periods.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Natural Gas Science and Engineering, 62 . pp. 330-339.
    Publication Date: 2022-01-31
    Description: Highlights • CO2-methane exchange in a pressure vessel was simulated. • The model uses a detailed description of the kinetics for the CO2-methane exchange and simplifies the transport phenomena. • Irreversible dissociation rate of CH4- and CO2-hydrate in the pressure vessel was estimated as 0.02 and 0.03 mol m−3.s−1. • Formation of CO2-hydrate not only improved the quality of CO2 retention but also enhanced the methane recovery. Carbon dioxide exchange with methane in the clathrate structure has been shown beneficial in laboratory experiments and has been suggested as a field-scale technique for production of natural gas from gas-hydrate bearing sediments. Furthermore, the method is environmentally attractive due to the formation of CO2-hydrate in the sediments, leading to the geosequestration of carbon dioxide. However, the knowledge is still limited on the impact of small-scale heterogeneities on hydrate dissociation kinetics. In the present study, we developed a model for simulating laboratory experiments of carbon dioxide injection into a pressure vessel containing a mixture of gas hydrate and quartz sand. Four experiments at different temperature and pressure conditions were modeled. The model assumes that the contents are ideally mixed and aims to estimate the effective dissociation rate of gas hydrate by matching the model results with the experimental observations. Simulation results indicate that with a marginal offset the model was able to simulate different hydrate dissociation experiments, in particular, those that are performed at high pressures and low temperatures. At low pressures and high temperatures large discrepancies were noticed between the model results and the experimental observations. The mismatches were attributed to the development of extremely heterogeneous flow patterns at pore-scale, where field-scale models usually assume the characteristics to be uniform. Through this modeling study we estimated the irreversible dissociation rate of methane- and CO2-hydrate as 0.02 and 0.03 mol m(-3) s(-1), respectively.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-01-31
    Description: We present a transport-reaction model (TRACTION) specifically designed to account for non-ideal transport effects in the presence of thermodynamic (e.g. salinity or temperature) gradients. The model relies on the most fundamental concept of solute diffusion, which states that the chemical potential gradient (Maxwell’s model) rather than the concentration gradient (Fick’s law) is the driving force for diffusion. In turn, this requires accounting for species interactions by applying Pitzer’s method to derive species chemical potentials and Onsager coefficients instead of using the classical diffusion coefficients. Electrical imbalances arising from varying diffusive fluxes in multicomponent systems, like seawater, are avoided by applying an electrostatic gradient as an additional transport contribution. We apply the model to pore water data derived from the seawater mixing zone at the submarine Mercator mud volcano in the Gulf of Cadiz. Two features are particularly striking at this site: (i) Ascending halite-saturated fluids create strong salinity (NaCl) gradients in the seawater mixing zone that result in marked chemical activity, and thus chemical potential gradients. The model predicts strong transport-driven deviations from the mixing profile derived from the commonly used Fick’s diffusion model, and is capable of matching well with the profile shapes observed in the pore water concentration data. Even better agreement to the observed data is achieved when ion pairs are transported separately. (ii) The formation of authigenic gypsum (several wt%) occurs in the surface sediments, which is typically restricted to evaporitic surface processes. Very little is known about the gypsum paragenesis in the subseafloor and we first present possible controls on gypsum solubility, such as pressure, temperature, and salinity (pTS), as well as the common ion and ion pairing effects. Due to leaching of deep diapiric salt, rising fluids of the MMV are saturated with respect to gypsum (as well as celestite and barite). Several processes that could drive these fluids towards gypsum supersaturation and hence precipitation were postulated and numerically quantified. In line with the varied morphology of the observed gypsum crystals, gypsum paragenesis at the MMV is likely a combination of two temperature-related processes. Gypsum solubility increases with increasing temperature, especially in strong electrolyte solutions and the first mechanism involves the cooling of saturated fluids along the geothermal gradient during their ascent. Secondly, local temperature changes, i.e. cooling during the transition from MMV activity towards dormancy results in the cyclic build-up of gypsum. The model showed that the interpretation of field data can be majorly misguided when ignoring non-ideal effects in extreme diagenetic settings. While at first glance the pore water profiles at the Mercator mud volcano would indicate strong reactive influences in the seawater mixing zone, our model shows that the observed species distributions are in fact primarily transport-controlled. The model results for SO4 are particularly intriguing, as SO4 is shown to diffuse into the sediment along its increasing (!) concentration gradient. Also, a pronounced gypsum saturation peak can be observed in the seawater mixing zone. This peak is not related to the dissolution of gypsum but is simply a result of the non-ideal transport forces acting on the activity profile of SO4 and Ca profiles.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-01-31
    Description: Highlights: • Clay dehydration water expelled from buried sediments drives mud volcanism. • Rise of fluids mediated by crustal-scale strike-slip faults cross-cutting wedge. • On active accretionary wedge, petroleum accumulations were dismantled in Neogene. • 4He enrichment and δ13C-CH4 ~−50‰ in fluids reflect an open hydrocarbon system. • Petroleum pools remain on shallow margin. Microbial gas vented out of active wedge. Abstract: A geochemical study of the composition of hydrocarbon gases and helium isotopes (3He/4He) in fluids from Mud Volcanoes (MVs) located on and out of the active accretionary wedge of the Gulf of Cadiz (GoC) provides information on fluid sources and migrations in deeply buried sediments. The GoC is a tectonically active segment of the Africa-Iberia plate boundary occluded beneath the thick sediments of an accretionary wedge dissected by crustal-scale strike-slip faults. Initially built during the Miocene Gibraltar Arc subduction, the wedge has since developed toward the W-NW in an oblique convergent setting. Interstitial water expelled from clays undergoing diagenesis in buried sediments drives mud volcanism on the wedge, with MVs located along strike-slip faults mediating fluid ascent. The large excess of radiogenic helium (4He) in all GoC fluids agrees with a clay mineral dehydration source of water. Hydrocarbon gases from all deepwater MVs bear methane having similar stable carbon isotope compositions of ~−50‰VPDB whether fluids are highly enriched in methane relative to heavier homologues (C2+) or not (Methane / (Ethane + Propane) ~10 to 10,000). We suggest that methane with −50‰VPDB was largely diffused out of early generating source rocks, and became dissolved in the water expelled by the buried sediments. Consistently, low 3He/4He ratios suggest an open hydrocarbon system: Petroleum accumulations and 3He dissolved in the original sedimentary pore water have mostly escaped into the water column during the major Late Neogene compressional events. At present, some MVs vent CH4-rich fluids from dewatering sediments, while other structures located on active thrusts additionally vent C2+-rich gases generated by active Cretaceous source intervals. By contrast, evaporitic seals preserved petroleum accumulations on the shallow Moroccan Margin, while the westernmost MVs located out of the accretionary wedge vent microbial gas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-01-31
    Description: Carbon dioxide (CO2) capture and storage (CCS) has been discussed as a potentially significant mitigation option for the ongoing climate warming. Natural CO2 release sites serve as natural laboratories to study subsea CO2 leakage in order to identify suitable analytical methods and numerical models to develop best-practice procedures for the monitoring of subseabed storage sites. We present a new model of bubble (plume) dynamics, advection-dispersion of dissolved CO2, and carbonate chemistry. The focus is on a medium-sized CO2 release from 294 identified small point sources around Panarea Island (South-East Tyrrhenian Sea, Aeolian Islands, Italy) in water depths of about 40–50 m. This study evaluates how multiple CO2 seep sites generate a temporally variable plume of dissolved CO2. The model also allows the overall flow rate of CO2 to be estimated based on field measurements of pH. Simulations indicate a release of ∼6900 t y–1 of CO2 for the investigated area and highlight an important role of seeps located at 〉20 m water depth in the carbon budget of the Panarea offshore gas release system. This new transport-reaction model provides a framework for understanding potential future leaks from CO2 storage sites.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...