GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology ecology 47 (2004), S. 0 
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Most widely used medium for cultivation of methanotrophic bacteria from various environments is that proposed in 1970 by Whittenbury. In order to adapt and optimize medium for culturing of methanotrophs from freshwater sediment, media with varying concentrations of substrates, phosphate, nitrate, and other mineral salts were used to enumerate methanotrophs by the most probable number method. High concentrations (〉1 mM) of magnesium and sulfate, and high concentrations of nitrate (〉500 μM) significantly reduced the number of cultured methanotrophs, whereas phosphate in the range of 15–1500 μM had no influence. Also oxygen and carbon dioxide influenced the culturing efficiency, with an optimal mixing ratio of 17% O2 and 3% CO2; the mixing ratio of methane (6–32%) had no effect. A clone library of pmoA genes amplified by PCR from DNA extracted from sediment revealed the presence of both type I and type II methanotrophs. Nonetheless, the cultivation of methanotrophs, also with the improved medium, clearly favored growth of type II methanotrophs of the Methylosinus/Methylocystis group. Although significantly more methanotrophs could be cultured with the modified medium, their diversity did not mirror the diversity of methanotrophs in the sediment sample detected by molecular biology method.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
    In:  EPIC3Estuarine Coastal and Shelf Science, ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
    Publication Date: 2015-04-28
    Description: River estuaries are responsible for high rates of methane emissions to the atmosphere. The complexity and diversity of estuaries require detailed investigation of methane sources and sinks, as well as of their spatial and seasonal variations. The Elbe river estuary and the adjacent North Sea were chosen as the study site for this survey, which was conducted from October 2010 to June 2012. Using gas chromatography and radiotracer techniques, we measured methane concentrations and methane oxidation (MOX) rates along a 60 km long transect from Cuxhaven to Helgoland. Methane distribution was influenced by input from the methane-rich mouth of the Elbe and gradual dilution by methane-depleted sea water. Methane concentrations near the coast were on average 30 ± 13 nmol L−1, while in the open sea, they were 14 ± 6 nmol L−1. Interestingly, the highest methane concentrations were repeatedly detected near Cuxhaven, not in the Elbe River freshwater end-member as previously reported. Though, we did not find clear seasonality we observed temporal methane variations, which depended on temperature and presumably on water discharge from the Elbe River. The highest MOX rates generally coincided with the highest methane concentrations, and varied from 2.6 ± 2.7 near the coast to 0.417 ± 0.529 nmol L−1 d−1 in the open sea. Turnover times varied from 3 to 〉1000 days. MOX rates were strongly affected by methane concentration, temperature and salinity. We ruled out the supposition that MOX is not an important methane sink in most of the Elbe estuary and adjacent German Bight.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...