GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (2)
  • Blackwell Science Ltd  (2)
  • AAAS (American Association for the Advancement of Science)  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Freshwater biology 48 (2003), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: SUMMARY 1. We studied the seasonal succession of phyto- and zooplankton and the potential impact of predation by salmonids on zooplankton population dynamics in a high-mountain Swiss lake.2. A comparison of patterns in the abundance, body length, fecundity and age structure in the Daphnia galeata population strongly suggests that trout predation had little impact on the population and was not the cause for a decline in summer.3. The dominance in the lake of adult trout that feed mainly on benthic prey may buffer the effect of predation on the larger zooplankton. Further, the relatively high amount of phytoplankton after spring thaw could be important for sustaining the Daphnia population under moderate fish predation.4. Partial correlation analyses proved circumstantial evidence for both exploitative and interference competition between some zooplankton taxa. D. galeata depressed performance of other plankton species through exploitative competition.5. Our study shows that the impact of fish on zooplankton in high-mountain lakes depends strongly on food web structure and trophic state of the lake. Where fish predation is weak, invertebrate predation combined with competition for food may be responsible for the dominance of large-bodied zooplankton species.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 10 (2004), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Populations living in seasonal environments are exposed to systematic changes in physical conditions that restrict the growth and reproduction of many species to only a short time window of the annual cycle. Several studies have shown that climate changes over the latter part of the 20th century affected the phenology and population dynamics of single species. However, the key limitation to forecasting the effects of changing climate on ecosystems lies in understanding how it will affect interactions among species. We investigated the effects of climatic and biotic drivers on physical and biological lake processes, using a historical dataset of 40 years from Lake Washington, USA, and dynamic time-series models to explain changes in the phenological patterns among physical and biological components of pelagic ecosystems. Long-term climate warming and variability because of large-scale climatic patterns like Pacific decadal oscillation (PDO) and El Niño–southern oscillation (ENSO) extended the duration of the stratification period by 25 days over the last 40 years. This change was due mainly to earlier spring stratification (16 days) and less to later stratification termination in fall (9 days). The phytoplankton spring bloom advanced roughly in parallel to stratification onset and in 2002 it occurred about 19 days earlier than it did in 1962, indicating the tight connection of spring phytoplankton growth to turbulent conditions. In contrast, the timing of the clear-water phase showed high variability and was mainly driven by biotic factors. Among the zooplankton species, the timing of spring peaks in the rotifer Keratella advanced strongly, whereas Leptodiaptomus and Daphnia showed slight or no changes. These changes have generated a growing time lag between the spring phytoplankton peak and zooplankton peak, which can be especially critical for the cladoceran Daphnia. Water temperature, PDO, and food availability affected the timing of the spring peak in zooplankton. Overall, the impact of PDO on the phenological processes were stronger compared with ENSO. Our results highlight that climate affects physical and biological processes differently, which can interrupt energy flow among trophic levels, making ecosystem responses to climate change difficult to forecast.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-30
    Description: Coastal global oceans are expected to undergo drastic changes driven by climate change and increasing anthropogenic pressures in coming decades. Predicting specific future conditions and assessing the best management strategies to maintain ecosystem integrity and sustainable resource use are difficult, because of multiple interacting pressures, uncertain projections, and a lack of test cases for management. We argue that the Baltic Sea can serve as a time machine to study consequences and mitigation of future coastal perturbations, due to its unique combination of an early history of multistressor disturbance and ecosystem deterioration and early implementation of cross-border environmental management to address these problems. The Baltic Sea also stands out in providing a strong scientific foundation and accessibility to long-term data series that provide a unique opportunity to assess the efficacy of management actions to address the breakdown of ecosystem functions. Trend reversals such as the return of top predators, recovering fish stocks, and reduced input of nutrient and harmful substances could be achieved only by implementing an international, cooperative governance structure transcending its complex multistate policy setting, with integrated management of watershed and sea. The Baltic Sea also demonstrates how rapidly progressing global pressures, particularly warming of Baltic waters and the surrounding catchment area, can offset the efficacy of current management approaches. This situation calls for management that is (i) conservative to provide a buffer against regionally unmanageable global perturbations, (ii) adaptive to react to new management challenges, and, ultimately, (iii) multisectorial and integrative to address conflicts associated with economic trade-offs.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Biogeosciences, 114 . G00D03.
    Publication Date: 2018-02-06
    Description: Lake Tahoe is an ultra-oligotrophic subalpine lake that is renowned for its clarity. The region experiences little cloud cover and is one of the most UV transparent lakes in the world. As such, it is an ideal environment to study the role of UV radiation in aquatic ecosystems. Long-term trends in Secchi depths showed that water transparency to visible light has decreased in recent decades, but limited data are available on the UV transparency of the lake. Here we examine how ultraviolet radiation varies relative to longer-wavelength photosynthetically active radiation (PAR, 400-700 nm, visible wavelengths) horizontally along inshore-offshore transects in the lake and vertically within the water column as well as temporally throughout 2007. UV transparency was more variable than PAR transparency horizontally across the lake and throughout the year. Seasonal patterns of Secchi transparency differed from both UV and PAR, indicating that different substances may be responsible for controlling transparency to UV, PAR, and Secchi. In surface waters, UVA (380 nm) often attenuated more slowly than PAR, a pattern visible in only exceptionally transparent waters with very low dissolved organic carbon. On many sampling dates, UV transparency decreased progressively with depth suggesting surface photobleaching, reductions in particulate matter, increasing chlorophyll a, or some combination of these increased during summer months. Combining these patterns of UV transparency with data on visible light provides a more comprehensive understanding of ecosystem structure, function, and effects of environmental change in highly transparent alpine and subalpine lakes such as Tahoe.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-07-27
    Description: Long-term observations show that fish and plankton populations in the ocean fluctuate in synchrony with large-scale climate patterns, but similar evidence is lacking for estuaries because of shorter observational records. Marine fish and invertebrates have been sampled in San Francisco Bay since 1980 and exhibit large, unexplained population changes including record-high abundances of common species after 1999. Our analysis shows that populations of demersal fish, crabs and shrimp covary with the Pacific Decadal Oscillation (PDO) and North Pacific Gyre Oscillation (NPGO), both of which reversed signs in 1999. A time series model forced by the atmospheric driver of NPGO accounts for two-thirds of the variability in the first principal component of species abundances, and generalized linear models forced by PDO and NPGO account for most of the annual variability of individual species. We infer that synchronous shifts in climate patterns and community variability in San Francisco Bay are related to changes in oceanic wind forcing that modify coastal currents, upwelling intensity, surface temperature, and their influence on recruitment of marine species that utilize estuaries as nursery habitat. Ecological forecasts of estuarine responses to climate change must therefore consider how altered patterns of atmospheric forcing across ocean basins influence coastal oceanography as well as watershed hydrology.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...