GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AAAS  (1)
  • AGU (American Geophysical Union)  (1)
  • 1
    Publication Date: 2020-10-16
    Description: Arctic primary production is sensitive to reductions in sea ice cover, and will likely increase into the future. Whether this increased primary production (PP) will translate into increased export of particulate organic carbon (POC) is currently unclear. Here we report on the POC export efficiency during summer 2012 in the Atlantic sector of the Arctic Ocean. We coupled 234-thorium based estimates of the export flux of POC to onboard incubation-based estimates of PP. Export efficiency (defined as the fraction of PP that is exported below 100 m depth: ThE-ratio) showed large variability (0.09 ± 0.19–1.3 ± 0.3). The highest ThE-ratio (1.3 ± 0.3) was recorded in a mono-specific bloom of Phaeocystis pouchetii located in the ice edge. Blooming diatom dominated areas also had high ThE-ratios (0.1 ± 0.1–0.5 ± 0.2), while mixed and/or prebloom communities showed lower ThE-ratios (0.10 ± 0.03–0.19 ± 0.05). Furthermore, using oxygen saturation, bacterial abundance, bacterial production, and zooplankton oxygen demand, we also investigated spatial variability in the degree to which this sinking material may be remineralized in the upper mesopelagic (〈300 m). Our results suggest that blooming diatoms and P. pouchetii can export a significant fraction of their biomass below the surface layer (100 m) in the open Arctic Ocean. Also, we show evidence that the material sinking from a P. pouchetii bloom may be remineralized (〉100 m) at a similar rate as the material sinking from diatom blooms in the upper mesopelagic, contrary to previous findings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Calcifying marine phytoplankton - coccolithophores — are some of the most successful yet enigmatic organisms in the ocean and are at risk from global change. To better understand how they will be affected, we need to know “why” coccolithophores calcify. We review coccolithophorid evolutionary history and cell biology as well as insights from recent experiments to provide a critical assessment of the costs and benefits of calcification. We conclude that calcification has high energy demands and that coccolithophores might have calcified initially to reduce grazing pressure but that additional benefits such as protection from photodamage and viral/bacterial attack further explain their high diversity and broad spectrum ecology. The cost-benefit aspect of these traits is illustrated by novel ecosystem modeling, although conclusive observations remain limited. In the future ocean, the trade-off between changing ecological and physiological costs of calcification and their benefits will ultimately decide how this important group is affected by ocean acidification and global warming
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...