GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1970-1974  (3)
Material
Person/Organisation
Language
Years
  • 1970-1974  (3)
Year
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Society of Exploration Geophysicists ; 1973
    In:  GEOPHYSICS Vol. 38, No. 2 ( 1973-04), p. 380-405
    In: GEOPHYSICS, Society of Exploration Geophysicists, Vol. 38, No. 2 ( 1973-04), p. 380-405
    Abstract: Electromagnetic coupling responses in frequency and time‐domain induced‐polarization measurements over a multilayered earth are evaluated. For collinear dipole‐dipole and pole‐dipole configurations over a dissipative layered subsurface, the percent frequency effects of electromagnetic coupling are seen to be as high as 60 percent for large [Formula: see text] values, where L is the length of the receiving dipole, [Formula: see text] is the conductivity of the top layer of the half‐space, and f is the higher frequency of excitation used. In both frequency and time‐domain analyses, the distinctive effects of layering compared to that of a homogeneous half‐space response are shown for different electrode configurations, layer geometry, and electrical parameters of the subsurface. The pole‐dipole configuration of electrodes, in general, exhibits higher coupling compared to the dipole‐dipole configuration. In time‐domain measurements, the late off‐time transient decays reflect almost entirely the normal polarizability of the layered subsurface, in that the coupling responses are significant only during the early off‐time of the transient. The mutual impedance between grounded dipoles of arbitrary length is computed by extension of the complete solution of the boundary‐value problem of a horizontal electric dipole situated over a multilayered half‐space. A number of nomograms are presented for various layered structures to eliminate the electromagnetic coupling response in the induced‐polarization measurements in order to obtain the true polarization effect of the subsurface.
    Type of Medium: Online Resource
    ISSN: 0016-8033 , 1942-2156
    RVK:
    Language: English
    Publisher: Society of Exploration Geophysicists
    Publication Date: 1973
    detail.hit.zdb_id: 2033021-2
    detail.hit.zdb_id: 2184-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Institute of Electrical and Electronics Engineers (IEEE) ; 1971
    In:  IEEE Transactions on Geoscience Electronics Vol. 9, No. 1 ( 1971-1), p. 63-71
    In: IEEE Transactions on Geoscience Electronics, Institute of Electrical and Electronics Engineers (IEEE), Vol. 9, No. 1 ( 1971-1), p. 63-71
    Type of Medium: Online Resource
    ISSN: 0018-9413
    Language: Unknown
    Publisher: Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 1971
    detail.hit.zdb_id: 2027520-1
    SSG: 16,13
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Society of Exploration Geophysicists ; 1970
    In:  GEOPHYSICS Vol. 35, No. 4 ( 1970-08), p. 660-703
    In: GEOPHYSICS, Society of Exploration Geophysicists, Vol. 35, No. 4 ( 1970-08), p. 660-703
    Abstract: A complete solution of the boundary value problem of a horizontal magnetic dipole over homogeneous and n‐layered half‐spaces is outlined. Quasi‐static expressions for the electric and magnetic fields have been obtained and a comparison of the complete solution with the quasi‐static approximation in practical frequency ranges is made. An analysis of the phases and amplitudes of the magnetic field components and of the polarization parameters of the magnetic field reveals that the phase of the vertical component of the magnetic field and the ellipticity of the magnetic field polarization ellipse are the most sensitive indicators of layering. Amplitude measurements are, in general, less effective than phase measurements for resolution of layered earth structures. Results from both parametric and geometric modes of sounding have been studied in detail for a number of two‐ and three‐layered models of varying thicknesses and conductivity contrasts. Deduction of layering for different thicknesses of the top layer from the measurements of [Formula: see text] and polarization parameters, seems relatively easier when the underlying layer is more conductive than the top layer. For models in which the underlying layer is less conductive than the top layer, the phases of both [Formula: see text] and wave tilt are more diagnostic of changes in layer parameters.
    Type of Medium: Online Resource
    ISSN: 0016-8033 , 1942-2156
    RVK:
    Language: English
    Publisher: Society of Exploration Geophysicists
    Publication Date: 1970
    detail.hit.zdb_id: 2033021-2
    detail.hit.zdb_id: 2184-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...