GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1980-1984  (3)
Document type
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Marine biology 65 (1981), S. 69-75 
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A random walk stimulation model was developed to explore the effects of variations in light regimes due to vertical mixing on primary productivity. Cells were allowed to light-shade adapt on some time scale by altering chl:carbon ratios in response to variations in light regimes. Photosynthetic response was adjusted according to variations in chl: carbon ratios by either varying the initial slopes of photosynthesis-irradiance curves, or varying photosynthetic capacities. The model suggests that despite physiological adaptation to light, vertical mixing may have little effect on the integrated water column primary productivity. It is suggested that if photoinhibition does not have a pronounced effect, the average distribution of primary production in a water column is not related to variations in light regimes arising from turbulent diffusion processes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Marine biology 59 (1980), S. 71-77 
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Intracellular chlorophyll a content is one of the many measurable parameters which displays a diel rhythm in marine phytoplankton. In asynchronous laboratory cultures of the diatom Skeletonema costatum, cellular chlorophylls a and c exhibit periodicities which closely follow the light-dark cycle and are not the result of cell division. The laboratory cultures also exhibit diel rhythms in cellular flourescence properties and carbon: chlorophyll a ratios. The occurrence of similar patterns of cellular flourescence, carbon: chlorophyll a ratios, and in situ flourescence in diatom-dominated natural phytoplankton communities suggests the possibility of diel rhythms in cellular chlorophyl a content in diatoms in the sea. The data also suggest that the observed periodicity in cellular chlorophyll content is regulated by the diel light cycle and that the co-occurrence of synchronous or phased cell division would only modify the observed periodicity.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Marine biology 83 (1984), S. 231-238 
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The marine planktonic diatom Thalassiosira weisflogii was grown in turbidostat culture under both continuous and 12 hL: 12 hD illumination regimes in order to study the kinetics of adaptation to growth-irradiance levels. In both illumination regimes adaptation to a higher growth-irradiance level was accompanied by an increase in cell division rates and a decrease in chlorophyll a cell-1. The rates of adaptation for both processes, derived from first order kinetic analysis, equaled each other in each experiment. The results suggest that during the transition from low-to-high growth-irradiance levels chlorophyll a is diluted by cell division and is not actively degraded. Introduction of a light/dark cycle lowered the rate of adaptation. In transitions from high-to-low growth-irradiance levels there was a sharp drop in growth rates and a slow increase in chlorophyll a cell-1 under both continuous and intermittent illumination. In the 12 hL:12hD cycle there was a circadian rhythm in chlorophyll a cell-1, where cellular chlorophyll contents increased during the light cycle and decreased during the dark cycle. This circadian rhythm was distinctly different from light intensity adaptation. For kinetic analysis of light intensity adaptation in a 12 hL: 12 hD cycle, the circadian periodicity was separated from the light intensity response by subjecting the data to a Kaiser window optimization digital filter. Kinetic parameters for light-intensity adaptation were resolved from the filtered data. The kinetics of lightintensity adaptation of marine phytoplankton are discussed in relation to their spatial variations and time scales of mixing.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...