GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (5)
Document type
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 325 (1987), S. 740-740 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Matte and Mattauer raise two objections to our interpretation of the Hercynian orogeny in the Pyrenees as a rifting event1'2'3, the first relating to the Hercynian deformation style, the second to the regional tectonic interpretation of the entire Hercynian belt of Western Europe. In the ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 318 (1985), S. 330-333 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] During very high-temperature/low-pressure Hercynian metamorphism in the Pyrenees the crust began to melt at ∼12 km and stable isotopes show that it was flushed by circulating seawater to that depth. There is no evidence for crustal collision and the tectonic setting for this, and maybe all ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 333 (1988), S. 119-120 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] GRANULITES, high-grade metamorphic rocks that are deficient in hydrous minerals, are significant constituents of the middle and lower continental crust, and are of great petrological interest1^4. Elucidating the conditions in which they formed will reveal much about the genesis of the early crust ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 91 (1985), S. 122-137 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Oxygen isotopic analyses of 95 metamorphic and igneous rocks and minerals from a Hercynian metamorphic sequence in the Trois Seigneurs Massif, Pyrenees, France, indicate that all lithologies at higher metamorphic grades than the “andalusite in” isograd have relatively homogeneous δ 18O values. The extent of homogenization is shown by the similarity of δ 18O values in metacarbonates, metapelites and granitic rocks (+11 to +13), and by the narrow range of oxygen isotopic composition shown by quartz from these lithologies. These values contrast with the δ 18O values of metapelites of lower metamorphic grade (δ 18O about +15). Homogenization was caused by a pervasive influx of hydrous fluid. Mass-balance calculations imply that the fluid influx was so large that its source was probably high-level groundwaters or connate formation water. Hydrogen isotopic analyses of muscovite from various lithologies are uniform and exceptionally heavy at δD=−25 to −30, suggesting a seawater origin. Many lines of petrological evidence from the area independently suggest that metamorphism and anatexis of pelitic metasediment occurred at depths of 6–12 km in the presence of this water-rich fluid, the composition of which was externally buffered. Deep penetration of surface waters in such environments has been hitherto unrecognized, and may be a key factor in promoting major anatexis of the continental crust at shallow depth. Three types of granitoid are exposed in the area. The leucogranites and the biotite granite-quartz diorite are both mainly derived from fusion of local Paleozoic pelitic metasediment, because all these rocks have similar whole-rock δ 18O values (+11 to +13). The post-metamorphic biotite granodiorite has a distinctly different δ 18O (+9.5 to +10.0) and was probably derived from a deeper level in the crust. Rare mafic xenoliths within the deeper parts of the biotite granite-quartz diorite also have different δ 18O (+8.0 to +8.5) and possibly represent input of mantle derived magma, which may have provided a heat source for the metamorphism.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Late Carboniferous (Hercynian) tectonism in the Pyrenees generated extremely steep thermal gradients at 8–14 km depth in the continental crust, producing andalusite- and sillimanite-grade metamorphism and partial melting of Lower Paleozoic metasediments under water-rich conditions. At the same time, amphibolite- and granulitefacies “basal gneisses” were equilibrated under dryer conditions at pressures of 4 to 7 kbar (14–25 km depth), beneath these higher-level rocks. We present 95 new oxygen isotopic analyses of samples from the Agly, St. Barthelemy, Castillon and Trois Seigneurs Massifs, highlighting contrasting 18O/16O systematics at different structural levels in the Hercynian crust, here termed Zones 1, 2, and 3. The unmetamorphosed, fossiliferous, Paleozoic shales and carbonates of Zone 1 have typical sedimentary δ 18O values, mostly in the range +14 to +16 for the pelitic rocks and +20 to +25 for the carbonates. The metamorphosed equivalents of these rocks in Zone 2 all have strikingly uniform and much lower δ 18O values; the metapelites mostly have δ 18O=+10 to +12, and interlayered metacarbonates from the Trois Seigneurs Massif have δ 18O of about +12 to +14. Typically, the Zone 3 “basal gneisses” are isotopically heterogeneous with variable δ 18O values ranging from +6 in mafic lithologies to +22 in carbonate-rich lithologies. Steep gradients in δ 18O (as much as 10 per mil over a few cm) are preserved at the margins of some metacarbonate layers. These data indicate that the Zone 3 gneisses were infiltrated by much smaller volumes of metamorphic pore fluids than were the overlying Zone 2 rocks, and that circulation of surface-derived H2O (either seawater or formation waters, as evidenced by high δD values) was mainly confined to the Paleozoic supracrustal sedimentary pile. This is compatible with an overall reduction of interconnected porosity with increasing depth, but perhaps even more important, the extensive partial melting at the base of Zone 2 may have produced a ductile, impermeable barrier to downward fluid penetration.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...