GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (2)
Document type
Publisher
Years
Year
  • 1
    ISSN: 1573-6903
    Keywords: Glutaminase ; neurons ; astrocytes ; phosphate ; glutamate ; ammonia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Phosphate activated glutaminase comprises two kinetically distinguishable enzyme forms in cultures of cerebellar granule cells, of cortical neurons and of astrocytes. Specific activity of glutaminase is higher in cultured neurons compared with astrocytes. Glutaminase is activated by phosphate in all cell types investigated, however, glutaminase in astrocytes reguires a much higher concentration of phosphate for half maximal activation. One of the products, glutamate, inhibits the enzyme strongly, whereas the other product ammonia has only a slight inhibitory action on the enzyme.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-6903
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The ontogenetic development of the enzymes phosphate activated glutaminase (PAG), glutamate dehydrogenase (GLDH), glutamic-oxaloacetic-transaminase (GOT), glutamine synthetase (GS), and ornithine-δ-aminotransferase (Orn-T) was followed in cerebellum in vivo and in cultured cerebellar granule cells. It was found that PAG, GLDH, and GOT exhibited similar developmental patterns in the cultured neurons compared to cerebellum. PAG showed, however, a more pronounced phosphate activation in the cultured granule cells compared to in vivo. The activity of GS remained low in the cultured neurons compared to the increasing activity of this enzyme found in vivo. On the other hand Orn-T exhibited an increase in its specific activity in the cultured cells as a function of time in culture in contrast to the non-changing activity of this enzyme in vivo. Compared to cerebellum the cultured neurons exhibited higher activities of GLDH, GOT, and Orn-T whereas the activity of PAG was only slightly higher in the cultured cells. The activity of GS in the cultured neurons was only 5–10% of the activity in cerebellum in vivo. It is concluded that cultured cerebellar granule cells represent a reliable model system by which the metabolism and function of glutamatergic neurons can be conveniently studied in a physiologically meaningful way.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...