GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (4)
Document type
Publisher
Years
Year
  • 1
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phytoplankton production, standing crop, and loss processes (respiration, sedimentation, grazing by zooplankton, and excretion) were measured on a daily basis during the growth, dormancy and decline of a winter-spring diatom bloom in a large-scale (13 m3) marine mesocosm in 1987. Carbonspecific rates of production and biomass change were highly correlated whereas production and loss rates were unrelated over the experimental period when the significant changes in algal biomass characteristic of phytoplankton blooms were occurring. The observed decline in diatom growth rates was caused by nutrient limitation. Daily phytoplankton production rates calculated from the phytoplankton continuity equation were in excellent agreement with rates independently determined using standard 14C techniques. A carbon budget for the winter bloom indicated that 82.4% of the net daytime primary production was accounted for by measured loss processes, 1.3% was present as standing crop at the end of the experiment, and 16.3% was unexplained. Losses via sedimentation (44.8%) and nighttime phytoplankton respiration (24.1%) predominated, while losses due to zooplankton grazing (10.7%) and nighttime phytoplankton excretion (2.8%) were of lesser importance. A model simulating daily phytoplankton biomass was developed to demonstrate the relative importance of the individual loss processes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Marine biology 96 (1987), S. 107-114 
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract When measurements of in-vivo fluorescence are used to estimate photosynthesis in the field, the marked temporal and spatial variations in phytoplankton populations, and their nutrient and light histories, have produced varied results. Natural phytoplankton populations in large, flow-through mesocosms with different controlled nutrient and sewage sludge additions were sampled weekly from June to September 1984. Good correlations were observed between the increase in fluorescence upon the addition of DCMU (ΔF) and both in-situ production and the parameters (Pm and α) of the photosynthesis-irradiance curve for these phytoplankton populations. Good correlations were also obtained between DCMU-enhanced fluorescence (FDCMU) and chlorophyll a concentrations. The relationship between ΔF and in-situ 14C production was consistent among mesocosms even in the face of major shifts from diatom-dominated to dinoflagellate-dominated populations. On the other hand, the FDCMU:Chl a relationship was significantly different between mesocosms and related to species composition. It was concluded that ΔF offers the possibility of rapidly and accurately indexing both in-situ production and the photosynthetic capacity of mixed phytoplankton populations.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-03-21
    Description: Phytoplankton production, standing crop, and loss processes (respiration, sedimentation, grazing by zooplankton, and excretion) were measured on a daily basis during the growth, dormancy and decline of a winter-spring diatom bloom in a large-scale (13 m3) marine mesocosm in 1987. Carbonspecific rates of production and biomass change were highly correlated whereas production and loss rates were unrelated over the experimental period when the significant changes in algal biomass characteristic of phytoplankton blooms were occurring. The observed decline in diatom growth rates was caused by nutrient limitation. Daily phytoplankton production rates calculated from the phytoplankton continuity equation were in excellent agreement with rates independently determined using standard 14C techniques. A carbon budget for the winter bloom indicated that 82.4% of the net daytime primary production was accounted for by measured loss processes, 1.3% was present as standing crop at the end of the experiment, and 16.3% was unexplained. Losses via sedimentation (44.8%) and nighttime phytoplankton respiration (24.1%) predominated, while losses due to zooplankton grazing (10.7%) and nighttime phytoplankton excretion (2.8%) were of lesser importance. A model simulating daily phytoplankton biomass was developed to demonstrate the relative importance of the individual loss processes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...