GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Methanogenic bacteria  (2)
  • Carbon dioxide  (1)
  • 1985-1989  (3)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 150 (1988), S. 477-481 
    ISSN: 1432-072X
    Keywords: Methanogenic bacteria ; Alcohols ; Trace elements ; Methylreductase ; Taxonomy ; Methanogenium thermophilum ; Methanogenium, organophilum ; Methanospirillum hungatei
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A thermophilic coccoid methanogenic bacterium, strain TCI, that grew optimally around 55° C was isolated with 2-propanol as hydrogen donor for methanogenesis from CO2. H2, formate or 2-butanol were used in addition. Each secondary alcohol was oxidized to its ketone. Growth occurred in defined freshwater as well as salt (2% NaCl, w/v) medium. Acetate was required as carbon source, and 4-aminobenzoate and biotin as growth factors. A need for molybdate or alternatively tungstate was shown. Strain TCI was further characterized together with two formerly isolated mesophilic secondary alcohol-utilizing methanogens, the coccoid strain CV and the spirilloid strain SK. The guanine plus cytosine content of the DNA of the three strains was 55,47, and 39 mol%, respectively. Determination of the molecular weights of the methylreductase subunits and sequencing of ribosomal 16S RNA of strains TCI and CV revealed close relationships to the genus Methanogenium. The new isolate TCI is classified as a strain of the existing species, Methanogenium thermophilum (thermophilicum). For strain CV, that uses ethanol or 1-propanol in addition, a classification as new species, Methanogenium organophilum, is proposed. Strain SK is affiliated with the existing species, Methanospirillum hungatei. The ability to use secondary alcohols was also tested with described species of methanogens. Growth with secondary alcohols was observed with Methanogenium marisnigri, Methanospirillum hungatei strain GP1 and Methanobacterium bryantii, but not with Methanospirillum strains JF1 and M1h, Methanosarcina barkeri, Methanococcus species or thermophilic strains or species other than the new isolate TCI.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Autotrophic growth ; Sulfate-reducing bacteria ; Carbon dioxide ; Hydrogen ; Formate ; Homoacetogenic bacteria ; Desulfobacterium autotrophicum ; Desulfovibrio
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The capacity of mesophilic sulfate-reducing bacteria to grow lithoautotrophically with H2, sulfate and CO2 was investigated with enrichment cultures and isolated species. (a) Enrichments in liquid mineral media with H2, sulfate and CO2 consistently yielded mixed cultures of nonautotrophic, acetate-requiring Desulfovibrio species and autotrophic, acetate-producing Acetobacterium species (cell ratio approx. 20:1). (b) By direct dilution of mud samples in agar, various non-sporing sulfate reducers were isolated in pure cultures that did grow autotrophically. Two oval cell types (strains HRM2, HRM4) and one curved cell type (strain HRM6) from marine sediment were studied in detail. The strains grew in mineral medium supplemented only with vitamins (biotin, p-aminobenzoate, nicotinate). Carbon autotrophy was evident (i) from comparative growth experiments with non-autotrophic, acetate-requiring species, (ii) from high cell densities ruling out a cell synthesis from organic impurities in the mineral media, and (iii) by demonstrating that 96–99% of the cell carbon was derived from 14C-labelled CO2. Autotrophic growth occurred with a doubling time of 16–20 h at 24–28°C. Formate, fatty acids up to palmitate, ethanol, lactate, succinate, fumarate, malate and other organic acids were also used and completely oxidized. The three strains possessed cytochromes of the b-and c-type, but no desulfoviridin. Strain HRM2 is described as a new species of a new genus, Desulfobacterium autotrophicum. (c) The capacity for autotrophic growth was also tested with sulfate-reducing bacteria that originally had been isolated on organic substrates. The incompletely oxidizing, non-sporing types such as Desulfovibrio and Desulfobulbus species and Desulfomonas pigra were confirmed to be obligate heterotrophs that required acetate for growth with H2 and sulfate. In contrast, several of the completely oxidizing sulfate reducers were facultative autotrophs, such as Desulfosarcina variabilis, Desulfonema limicola, Desulfococcus niacini, and the newly isolated Desulfobacterium vacuolatum and Desulfobacter hydrogenophilus. The only incompletely oxidizing sulfate reducer that could grow autotrophically was the sporing Desulfotomaculum orientis, which obtained 96% of its cell carbon from 14C-labelled CO2. Desulfovibrio baarsii and Desulfococcus multivorans may also be regarded as types of facultative autotrophs; they could not oxidize H2, but grew on sulfate with formate as the only organic substrate.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-072X
    Keywords: Methanogenic bacteria ; Alcohols ; Ketones ; Aldehydes ; Alcohol dehydrogenase ; Enzyme expression ; Methanogenium thermophilum ; Factor F420
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In four species of methanogens able to grow with secondary alcohols as hydrogen donors the expression and properties of secondary alcohol dehydrogenase (sec-ADH) were investigated. Cells grown with 2-propanol and CO2 immediately started to oxidize secondary alcohols to ketones if transferred to new media. In the presence of H2, such cells reduced ketones or aldehydes to alcohols. In the absence of H2, aldehydes were dismutated (without growth) to primary alcohols and fatty acids. None of these reactions was catalyzed by cells grown with only H2 and CO2 at non-limiting concentration. This indicated an induction or derepression of sec-ADH by its substrate. Apparently, sec-ADH in all strains enabled not only the reduction of ketones or aldehydes, but also the dismutation of the latter. Sec-ADH was also expressed if strains were grown on H2 and CO2 in the presence of non-oxidizable, tertiary alcohols. Methanogenium thermophilum expressed sec-ADH even without added alcohol when H2 became limiting. From this species, an F420-specific sec-ADH was purified; the final gel filtration chromatography yielded a single protein peak that coincided with the activity. The enrichment was 12-fold, the activity recovery 26%. SDS polyacrylamide gel electrophoresis indicated that the enzyme was a homodimer with an apparent M r of 79,000. At the pH optimum around 4.2, the specific activity for oxidation of 2-propanol (130 mM) and reduction of acetone (20 mM) was 176 and 110 μmol/ min·mg, respectively (40°C). The apparent K m for 2-propanol and acetone (with 15 μM F420) was 2.5 and 0.25 mM, respectively. Aldehydes also were reduced.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...