GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Publishing Ltd  (2)
  • 1985-1989  (2)
Document type
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 52 (1989), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The synthesis of carnosine (β-Ala-His) by astroglia-rich primary cultures was much higher if the cells were cultivated in Ham's nutrient mixture F-12 than if they were grown in Dulbecco's modified Eagle's medium. Carnosine synthesis was not affected by the presence of insulin, trans-ferrin. phorbol myristate acetate, or dexamethasone. However. dibutyryl cyclic AMP and other agents that can, directly or ndirectly, activate cyclic AMP-dependent protein kinases strongly lower the rate of carnosine synthesis. The depression of carnosine synthesis was dependent on the concentration of dibutyryl cyclic AMP. The effect was maximal (approximately 80% inhibition) in cultures preincubated with 1 mM dibutyryl cyclic AMP for 4 days. The adenylate cyclase activator forskolin, the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine, and 8-bromo-cyclic AMP caused the same depression as dibutyryl cyclic AMP, whereas neither butyrate nor dibutyryl cyclic GMP elicited any effect.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 49 (1987), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Uptake of carnosine has been investigated in as-troglia-rich primary cultures derived from brains of newborn mice. It could be demonstrated that carnosine is not degraded by these cells but rapidly taken up in an energy and sodium-dependent process. Uptake and release of carnosine by these cells were found to be mediated by a saturable, high-affinity transport system with apparent kinetic constants of Km=50 μMand Vmax= 22.7 nmol h1 mg protein1. Uptake of carnosine is strongly inhibited by other dipeptides as well as by various oligopeptides, e.g., Leu-en-kephalin. However, uptake of the radiolabeled tripeptide D Ala-L-Ala-L-Ala was not observed. Radiolabeled Leu-en-kephalin also did not accumulate intracellularly, even if degradation of the peptide was prevented by use of peptidase inhibitors. These results suggest that uptake of carnosine is catalyzed by a dipeptide-specific transport system with broad substrate specificity. With neuronal cells in primary culture, uptake of carnosine or other peptides was not observed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...