GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (71 Seiten = 4 MB) , Graphen, Karten
    Edition: Online-Ausgabe 2020
    Language: German
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Type of Medium: Book
    Pages: IV,66 Bl , graph. Darst.
    Series Statement: Berichte aus dem Institut für Meereskunde an der Christien-Albrechts-Universität Kiel 84
    Language: German
    Note: Mit engl. Zsfassung , Kiel, Univ., Naturwiss. Dipl.-Arb., 1981
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Hochschulschrift
    Type of Medium: Book
    Pages: III, 108 S , 32 graph. Darst , 30 cm
    Series Statement: Berichte aus dem Institut für Meereskunde an der Christian-Albrechts-Universität Kiel 125
    Language: German
    Note: Literaturverz. S. 100 - 107 , Zugl.: Kiel, Univ., Diss., 1984
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 326 (1987), S. 373-375 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Hurricane Gloria (1985) began to form very late in the hurricane season off the Cape Verde Islands1. Gloria moved nearly due westward with the trade winds to about the Leeward Islands, and then turned north-west toward the Sargasso Sea. On 25 September the minimum central pressure fell to 919 mbar, ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Ocean dynamics 37 (1984), S. 147-155 
    ISSN: 1616-7228
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Description / Table of Contents: Zusammenfassung Zwei lange Nord-Süd orientierte CTD-Schnitte, die von dem FS “Meteor” im subtropischen Ostatlantik gewonnen wurden, werden benutzt, um die potentielle Vorticity und den Volumentransport zu berechnen. Die Ergebnisse werden mit der potentiellen Vorticity des westlichen Nordatlantiks und mit dem Transportfeld aus mittleren Profilen des Ostatlantiks verglichen. Die Verteilung der potentiellen Vorticity steht in guter Übereinstimmung mit Datensätzen aus dem westlichen und östlichen Nordatlantik verschiedener Jahre und zeigt deutlich den Einfluß des subtropischen Wirbels. Der Volumentransport aus den CTD-Schnitten ist vergleichbar mit den mittleren Transporten im Bereich des subtropischen Wirbels und weist Abweichungen nördlich und südlich des Wirbels auf. Die starken Strömungen des Wirbels erreichen Geschwindigkeiten von 7 cm s−1 an der Oberfläche, und Geschwindigkeiten von mehr als 1 cm s−1 reichen bis in 940 m Tiefe.
    Abstract: Résumé Deux longs profils Nord-Sud de mesures CTD effectués par le navire RV «Meteor» au cours de la campagne 60 dans la partie subtropicale de l'Océan Atlantique Oriental Nord ont permis le calcul de la vorticité potentielle et du transport de masse. Notre répartition de la vorticité potentielle est en conformité avec l'ensemble des résultats de plusieurs années de mesures dans l'Océan Atlantique Nord Occidental et Oriental et montre clairement l'influence du tourbillon subtropical. Le transport de masse évalué à partir des profils CTD correspond bien au transport moyen dans le tourbillon subtropical et montre les écarts au Nord et au Sud du tourbillon. La vitesse du courant tourbillonnaire va de 7 cm s−1 en surface à moins de 1 cm s−1 au-delà de 940 m d'immersion.
    Notes: Summary Two long north-south oriented CTD sections taken on RV “Meteor” cruise 60 in the eastern subtropical North Atlantic are used to compute potential vorticity and volume transport. Our distribution of potential vorticity is in good agreement with data sets from different years in the western and eastern North Atlantic and shows the influence of the subtropical gyre distinctly. The volume transport of the CTD sections corresponds well with mean transport in the subtropical gyre and shows deviations north and south of the gyre. The gyre current velocities range from 7 cm s−1 at the surface to less than 1 cm s−1 below 940 m depth.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Sears Foundation of Marine Research
    In:  Journal of Marine Research, 46 (2). pp. 281-299.
    Publication Date: 2017-11-28
    Description: Seasonal meridional ocean temperature fluxes were computed in a regional study of the eastern North Atlantic Ocean east of 30°30′W between 12°30′N and 39°30′N for the upper 1500 m of the ocean. Historical oceanographic and meteorological measurements are the data base for the direct method of computing temperature fluxes. Seasonal changes in temperature fluxes caused by the seasonality of Ekman transport and geostrophic transport are strongly dependent on latitude. Between 19N and 25N the meridional temperature flux shows low seasonality. In this area the permanent subtropical gyre and the stable trade-winds result in low seasonal changes. North of 25N the Ekman transport shows large seasonal variations. The latitude of the transition of southward Ekman temperature flux to northward Ekman temperature flux is located at 28N in winter. In summer it is found at 38N. The seasonal variability of the meridional temperature fluxes in the subtropics north of 25N is influenced by this annual cycle in Ekman transport, as well as by the southward displacement in summer and the northward movement of the Azores Current in winter. The tropical eastern Atlantic Ocean shows seasonal changes both in the geostrophic and Ekman transports. South of 17N the total temperature flux is always to the north. The largest meridional temperature fluxes, with more than 0.7 PW, are found in fall at 12°30′N directed northward, and in winter at 33°30′N to the south. In general the subtropical eastern North Atlantic Ocean transports heat to the south all the year round, while in the tropics heat is transported to the north. The seasonality in the eastern Atlantic Ocean is found to be different from seasonal variations in global investigations. The seasonal heat budget computations show a heat gain in the ocean in the area investigated from April to September and a heat loss from October to March. Over the whole year the eastern North Atlantic gains about 0.09 PW from the atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Yale University
    In:  Journal of Marine Research, 42 (3). pp. 537-558.
    Publication Date: 2017-11-28
    Description: Geostrophic transports in the eastern subtropical North Atlantic computed from historic hydrographic data and recent CTD measurements show a mean transport in the subtropical gyre of 11 ± 1.5 × 106 m3 s–1 in the upper 1000 m between 35W and the African coast. The dynamic method was used in conjunction with a conservation of mass scheme (Fiadeiro and Veronis, 1982) to determine the level of no motion. This level lies in the 1200 m depth near the Azores and drops to 1500 m in the tropics. The main inflow enters south of the Azores as a relatively narrow current, turns southward at the latitude of Madeira and then widens. Three current bands transport the water southward. North of the Cape Verde Islands, the current turns westward. This part of the North Equatorial Current extends more to the south in the upper 200 m than in the 200–800 m layer. The Portugal current, between the Azores and the Portuguese coast, which is thought by some to be strong, is seen here as a relatively weak flow. Maps of potential vorticity derived from smoothed density profiles are consistent with the general pattern of geostrophic transport.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 326 (6111). pp. 373-375.
    Publication Date: 2018-03-02
    Description: Hurricanes and other strong storms can cause important decreases in sea surface temperature by means of vertical mixing within the upper ocean, and by air–sea heat exchange. Here we use satellite-derived infrared images of the western North Atlantic to study sea surface cooling caused by hurricane Gloria (1985). Significant regional variations in sea surface cooling are well correlated with hydrographic conditions. The greatest cooling (up to 5°C) occurred in slope waters north of the Gulf Stream where the seasonal thermocline is shallowest and most compressed; moderate cooling (up to 3 °C) occurred in the open Sargasso Sea where the thermocline is deeper and more diffused; little or no cooling occurred in shallow coastal waters (bottom depth less than 20 m) which were isothermal before the passage of hurricane Gloria. There is a pronounced right-side asymmetry of sea surface cooling with stronger (by a factor of 4) and more extensive (by a factor of 3) cooling found on the right side of the hurricane track. These qualitative results are consistent with the notion that vertical mixing within the upper ocean is the dominant sea surface cooling mechanism of hurricanes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 16 (5). pp. 814-826.
    Publication Date: 2018-04-04
    Description: Simulated transient-tracer distributions (tritium, 3H3, freons) on the isopycnal horizons σ0=26.5 and 26.8 kg m−3 are presented for the East Atlantic, 10° −40°N. Tracer transport is modeled by employing a baroclinic flow field based on empirical data in a kinematic isopycnal advection-diffusion numerical model, in which winter convection is taken as the mechanism of communication with the ocean surface layer, and the isopycnal diffusivity is a free parameter. Diapucnic transport is ignored. The simulations employ time-dependent tracer boundary conditions, which are constructed on the basis of available observations. Simulations are compared to data obtained on a meridional section in 1981 (F/S Meteor, cruise 56/5). Best simulations were obtained by means of a subjective optimization procedure. On both levels, the observed distributions and the best simulated distributions agree well. The fact that the surface boundary conditions and interior distributions of the tracers are distinctly different leads us to the conclusion that our model provides a consistent description of upper main-thermocline ventilation and interior transport Surface-water densities in February are found to represent adequately the winter outcrop boundaries with an uncertainty of about ±300 km across. The required isopycnal diffusivity south of 29°N is 1700 m2 s−1, and 2900 m2 s−1 further north (+70/−40%). Interior transport is found to be predominantly advective. Advective ventilation across 30.5°N east of 33°W amounts to only 12% and 40% for the 26.5 and 26.8 horizons of the total ventilation rates reported by Sarmiento. The North Atlantic/South Atlantic Central Water boundary near 15°N is found to be predominantly determined by advection.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 93 (C7). pp. 8111-8118.
    Publication Date: 2017-09-26
    Description: The eastern part of the North Atlantic subtropical gyre is found in the region between the Azores and the Cape Verde Islands. A study of the gyre structure in the area east of 35°W between 8°N and 41°N is presented. The geostrophic flow field determined from historical temperature-salinity data sets by objective analysis indicates seasonal variations in shape but no significant changes in the magnitude of volume transports. The eastern part of the gyre has a larger east-west and smaller north-south extension in summer compared with the winter season. The center shifts by about 2° latitude to the south from winter to summer. Long-term temperature time series (6.5 years) from a mooring near the Azores are consistent with these results, showing always a consistent temperature increase at the beginning of the year which is apparently due to the displacement of the northeastern part of the gyre. A comparison between the mean flow fields and fields obtained from individual zonal sections indicates large deviations north and south of the gyre but small deviations within the gyre.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...