GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Book
    Book
    Kiel : Inst. für Meereskunde
    Type of Medium: Book
    Pages: V, 99 S. , Ill., graph. Darst.
    Series Statement: Berichte aus dem Institut für Meereskunde an der Christian-Albrechts-Universität Kiel 222
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 98 (C5). p. 8405.
    Publication Date: 2019-09-23
    Description: Hydrographic observations from the Iberian Basin demonstrate the variability of water masses in upper and intermediate layers. The surveyed area embraces the internal front between water masses from higher latitudes and the Mediterranean outflow, exhibits several isolated Mediterranean eddy (meddy) structures at middepth, and displays the virtual source region for the Mediterranean Water (MW) tongue off the Portuguese continental slope. The description is enhanced by additional chlorofluoromethane measurements, which show anomalously high concentrations at middepth, due to mixing of MW with the overlying Atlantic waters in the Gulf of Cadiz. The geostrophic stream function shows several meddylike features that not only are remarkably extended in the depth range of the MW, but are also correlated with surface height anomalies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 97 (C8). pp. 12495-12510.
    Publication Date: 2019-04-04
    Description: During January and February 1989 the recirculation of the subtropical gyre in the eastern North Atlantic was surveyed with a three-ship experiment. The analysis of hydrographic measurements and velocity data from a shipboard acoustic Doppler current profiler reveals the synoptic-scale circulation patterns and water mass distributions in the Canary Basin. The geostrophic transport stream function estimated with a horizontally varying reference level of no motion highlights the major currents in three layers representing the vertical structure of the horizontal circulation. The classical circulation scheme is shown by the stream function in the upper 200 m: the Azores, Canary, and North Equatorial currents. Unlike the deep-penetrating Azores Current, the Canary Current and the North Equatorial Current are restricted to the upper 200 m. Both carry North Atlantic Central Water along the water mass boundary with South Atlantic Central Water. South Atlantic Central Water flows through the passage between the Cape Verde archipelago and Africa via narrow currents into the area north of 14.5°N. At the southern edge of the subtropical gyre we identify an eastward flow of Antarctic Intermediate Water between 700 and 1200 m.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 19 (24). pp. 2389-2392.
    Publication Date: 2016-05-12
    Description: Mediterranean salt lenses (meddies) are a dominant factor in the salt budget of the Atlantic at middepth. In spite of their important role, their juvenile migration has not yet been directly observed. For the first time, two RAFOS float trajectories show strong evidence of a meddy along the Iberian continental slope off Lisbon. Over six weeks we obtained drift observations from two levels (629, 847 dbar). Both instruments recorded a series of loops with an azimuthal speed O (30 cm s−1) at a radius of about 25 km. Relatively high propagation speeds of several centimeters per second indicate the meddy was probably carried along with the undercurrent of Mediterranean Water. The Tejo Plateau, a prominent feature of the continental slope and a natural obstacle for the spreading Mediterranean Water tongue, appears to act as a deflector for advected meddies possibly formed by interaction of the undercurrent with the canyon-rich topography farther south.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-06-22
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 113 (1-2). pp. 287-292.
    Publication Date: 2018-03-02
    Description: Dense Antarctic Bottom Water formed around the continent of Antarctica spreads northward in the Atlantic underneath North Atlantic Deep Water, gradually mixing and upwelling into it. This Antarctic Water forms a significant element of the meridional circulation in both directions: northward as bottom water and southward as deep water. It is important to determine the strength of each component to assess its role in ocean circulation. Such measurements are useful when made in constricted pathways because any flow is more clearly defined. A new set of fine-resolution hydrograhic measurements in the Hunter Channel of the South Atlantic Ocean has been obtained, which allow the geostrophic bottom flow there to be estimated for the first time. The northward flow through the Hunter Channel of water cooler than 2-degrees-C is thus estimated to be 0.7 X 10(6) m3 s-1.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Pergamon Press
    In:  Deep Sea Research Part A: Oceanographic Research Papers, 37 (12). pp. 1805-1823.
    Publication Date: 2020-08-04
    Description: Two stacked outflow cores of the Mediterranean Water undercurrent pass through a broad “gateway” between Cape St. Vincent and Gettysburg Bank entering the Iberian Basin. The upper core (depth ∼750 m, σ1=31.85) shows a strong tendency to follow the contours of the Portuguese continental rise. Yet, the lower core (depth ∼1250 m, σ1=32.25) primarily meanders west and northwestward forming large blobs of Mediterranean Water. The predominance of isolated Meddy structures embedded in a background field is reflected in a long-term current meter record from the deep Iberian Basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 8 (5). pp. 669-676.
    Publication Date: 2020-08-04
    Description: A low-cost underwater sound recorder has been developed and tested. It is designed to receive signals from sound sources that serve as navigation aids for RAFOS floats. This moored version of the RAFOS float (MAFOS) can monitor sound sources over many months and several hundred kilometers. It thus improves RAFOS navigation accuracy by enabling corrections for potential long-term clock drifts of the sound sources. MAFOS can also provide information on the local variation in the speed of sound due to natural hydrographic variability. In a first test, this usefulness has been proven and a warm, salty inhomogenity that traveled through a sound-source mooring array in the Iberian Basin has been observed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 23 (12). pp. 2667-2682.
    Publication Date: 2018-04-05
    Description: The total transport of Antarctic Bottom Water across the Rio Grande Rise, including the western boundary, the Vema Channel, and the Hunter Channel is estimated from hydrographic measurements across these pathways. The contribution of the Vema Channel is greatest at 3.9 × 106 m3 s−1, which is very close to earlier estimates. The western boundary current contribution is 2.0 × 106 m3 s−1 and that of the Hunter Channel 0.7 × 106 m3 s−1. The lower values outside the Vema Channel are offset by the important source of mass they form to the lower density classes of bottom water. About 40% of the flow is concentrated in the highest density class representing the source of Weddell Sea Deep Water to the Brazil Basin. The flow structure is characterized by horizontal and vertical recirculation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 24 (10). pp. 2129-2141.
    Publication Date: 2018-04-05
    Description: In this study a scenario is developed of two adjacent Mediterranean Water eddies (meddies) as they were observed merging and drifting through the Iberian Basin. Observations are based on four RAFOS floats (at 850–1050 dbar), two hydrographic surveys (centered roughly at 38°N, 24°W), and trajectories of surface drifters (drogued at 100 m). In April 1991, the meddy A was identified and labeled by surface drifters. During the revisit one month later two meddies were encountered, B1 and B2, in the vicinity of the former meddy A. The coalescence of B1 (subsequently identified as A, one month older) and B2 is inferred from a simple kinematic model describing the observed movement of the RAFOS floats for up to three months after the second CTD survey. The deduced vorticity front, radius ∼15 km, within B1 was of insufficient strength to keep the core waters of B1 isolated and prevent the absorption of B1 by B2. The resulting meddy (B1 + B2) showed a clear near-surface dynamical signal. Its deep root (1800 m) could explain the expulsion from the meddy of the remaining RAFOS float and surface drifter at the time of the meddy's collision with the Josephine Seamount. For the first time, a set of Lagrangian and hydrographic observations give direct evidence that neighboring meddies can merge as predicted by theoretical considerations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...