GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (1)
Document type
Publisher
Years
Year
  • 1
    ISSN: 1432-136X
    Keywords: Heart ; Serum ; Contractility ; Albumin ; Globulins ; Cardiolipin ; Frog
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary This study investigates the inotropic effects of serum, its protein and lipid extracts, and commercial serum proteins and lipid on the isolated, spontaneously-beating heart and superfused, hypodynamic ventricle of the frog. Serum taken from either man, horse, calf, frog, or rabbit evoked marked positive inotropic responses which were unaffected by cholinergic, serotonergic, and adrenergic receptor antagonists. Dialysed serum (dialisand) and void volume fractions from Sephadex G200–120 columns corresponding to large molecular weight constituents evoked marked positive inotropic responses. When serum was separated into fractions containing either proteins or lipids/lipoproteins by high-density ultracentrifugation or activated charcoal, both extracts evoked marked positive inotropic responses. Commerical serum globulins and serum containing a high proportion of immunoglobulins elicited large increases in contractile force, whereas serum albumin evoked a negative inotropic effect. Serum which was either boiled and/or treated with chymotrypsin to denature proteins also caused a marked increase in isometric twitch tension in the frog heart. Similar inotropic response was obtained with fractions of boiled serum eluted on columns of Sephadex G200–120. These fractions corresponded to molecular weight in the region of 60–70 kDa. However, the inotropic effect of boiled serum was abolished following pretreatment with lipase. Superfusion of frog hearts with commercial cardiolipin resulted in marked dose-dependent increases in contractile force. The results demonstrate the presence of at least two large molecular weight cardioactive principles in serum. These substances are comparable in size to constituents of serum proteins (e.g., globulins and immuno-globulins) and serum lipids/lipoproteins (e.g., cardiolipin) and may serve as physiological regulators of cardiac function.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...