GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 155 (1991), S. 249-255 
    ISSN: 1432-072X
    Keywords: Anaerobic degradation ; Aromatic compounds ; Phenylacetate ; 4-Hydroxyphenylacetate ; Phenylglyoxylate ; 4-Hydroxyphenylglyoxylate ; 4-Hydroxybenzoate ; Toluene ; α-Oxidation ; Pseudomonas spec
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract From various oxic or anoxic habitats anaerobic enrichment cultures were set up which completely oxidized aromatic amino acids to CO2 with nitrate as electron acceptor. Tyrosine and tryptophan at first were degraded to phenol and indole, respectively, prior to utilization of the aromatic ring; with phenylalanine no intermediates were detected. Attempts to isolate denitrifying bacteria able to completely degrade aromatic amino acids were unsuccessful. Starting with these enrichments several strains of denitrifying bacteria were anaerobically enriched and isolated with known fermentation products of amino acids (phenylacetate, 4-OH-phenylacetate, 2-OH-benzoate) plus nitrate as sole sources of carbon and energy. Three strains were characterized further. They grew well in defined mineral salts medium, were gram-negative and facultatively anaerobic with strictly oxidative metabolism; molecular oxygen, nitrate or nitrite served as electron acceptors. The isolates were tentatively identified as pseudomonads, but could not be aligned to known species. They oxidized a variety of aromatic compounds completely to CO2 anaerobically and, with some exceptions, also aerobically. The substrates included among others: (4-OH)-phenylacetate, (4-OH)-phenylglyoxylate, benzoate, 2-aminobenzoate, phenol, OH-benzoates, indole and notably toluene. Reduced alicyclic compounds were not utilized. During anaerobic degradation of (4-OH)-phenylacetate transient accumulation of (4-OH)-phenylglyoxylate was observed. It is proposed that anaerobic α-oxidation of the-CH2−COOH side chain to -CO−COOH initiates anaerobic degradation of (4-OH)-phenylacetate. This implies a novel type of anaerobic α-hydroxylation with water as the oxygen donor.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Aromatic compounds ; Anaerobic aromatic metabolism ; Pseudomonas K 172 ; Phenol ; 4-Hydroxybenzoate ; p-Cresol ; Phenylacetate ; Benzoate ; Coenzyme A thioester
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The regulation of the expression of enzyme activities catalyzing initial reactions in the anoxic metabolism of various aromatic compounds was studied at the whole cell level in the denitrifying Pseudomonas strain K 172. The specific enzyme activities were determined after growth on six different aromatic substrates (phenol, 4-hydroxybenzoate, benzoate, p-cresol, phenylacetate, 4-hydroxyphenylacetate) all being proposed to be metabolized anaerobically via benzoyl-CoA. As a control cells were grown on acetate, or aerobically on benzoate. The expression of the following enzyme activities was determined. “Phenol carboxylase”, as studied by the isotope exchange between 14CO2 and the carboxyl group of 4-hydroxybenzoate; 4-hydroxybenzoyl-CoA reductase (dehydroxylating); p-cresol methylhydroxylase; 4-hydroxybenzyl alcohol dehydrogenase; 4-hydroxybenzaldehyde dehydrogenase; coenzymeA ligases for the aromatic acids benzoate, 4-hydroxybenzoate, phenylacetate, and 4-hydroxyphenylacetate; phenylglyoxylate: acceptor oxidoreductase and 4-hydroxyphenylglyoxylate: acceptor oxidoreductase; aromatic alcohol and aldehyde dehydrogenases. The formation of most active enzymes is strictly regulated; they were only induced when required, the basic activities being almost zero. The observed whole cell regulation pattern supports the postulate that the enzyme activities play a role in anoxic aromatic metabolism and that the compounds are degraded via the following intermediates: Phenol → 4-hydroxybenzoate → 4-hydroxybenzoyl-CoA → benzoyl-CoA; 4-hydroxybenzoate → 4-hydroxybenzoyl-CoA → benzoyl-CoA; benzoate → benzoyl-CoA; p-cresol → 4-hydroxybenzaldehyde → 4-hydroxybenzoate → 4-hydroxybenzoyl-CoA → benzoyl-CoA; phenylacetate → phenylacetyl-CoA → phenylglyoxylate → benzoyl-CoA plus CO2; 4-hydroxyphenylacetate → 4-hydroxyphenylacetyl-CoA → 4-hydroxyphenylglyoxylate → 4-hydroxybenzoyl-CoA plus CO2 → benzoyl-CoA.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-072X
    Keywords: Toluene ; Aromatic hydrocarbons ; Anaerobic metabolism ; Pseudomonas ; Benzoyl-CoA ; Benzyl alcohol ; Benzaldehyde ; Toluene methylhydroxylation ; Dehydrogenases
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The anaerobic degradation of toluene has been studied with whole cells and by measuring enzyme activities. Cultures of Pseudomonas strain K 172 were grown in mineral medium up to a cell density of 0.5 g of dry cells per liter in fed-batch culture with toluene and nitrate as the sole carbon and energy sources. A molar growth yield of 57 g of cell dry matter formed per mol toluene totally consumed was determined. The mean generation time was 24 h. The redox balance between toluene consumed (oxidation and cell material synthesis) and nitrate consumed (reduction to nitrogen gas and assimilation as NH3) was 77% of expectation if toluene was completely oxidized; this indicated that the major amount of toluene was mineralized to CO2. It was tested whether the initial reaction in anaerobic toluene degradation was a carboxylation or a dehydrogenation (anaerobic hydroxylation); the hypothetical carboxylated or hydroxylated intermediates were tested with whole cells applying the method of simultanous adaptation: cells pregrown on toluene degraded benzyl alcohol, benzaldehyde, and benzoic acid without lag, 4-hydroxybenzoate and p-cresol with a 90 min lag phase and phenylacetate after a 200 min lag phase. The cells were not at all adapted to degrade 2-methylbenzoate, 4-methylbenzoate, o-cresol, and m-cresol, nor did these compounds support growth within a few days after inoculation with cells grown on toluene. In extracts of cells anaerobically grown on toluene, benzyl alcohol dehydrogenase, benzaldehyde dehydrogenase, and benzoyl-CoA synthetase (AMP forming) activities were present. The data (1) conclusively show anaerobic growth of a pure culture on tolucne; (2) suggest that toluene is anaerobically degraded via benzoyl-CoA; (3) imply that water functions as the source of the hydroxyl group in a toluene methylhydroxylase reaction.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-072X
    Keywords: Key words: Anaerobic phenol metabolism –Pseudomonas– Phenylphosphate – Phenol – Phenol kinase – Phenylphosphate carboxylase – Phosphotransferase system
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Anaerobic phenol degradation has been shown to proceed via carboxylation of phenol to 4-hydroxybenzoate. However, in vitro the carboxylating enzyme was inactive with phenol; only phenylphosphate (phosphoric acid monophenyl ester) was readily carboxylated. We demonstrate in a denitrifying Pseudomonas strain that phenylphosphate is the first detectable product formed from phenol in whole cells and that subsequent phenylphosphate consumption parallels 4-hydroxybenzoate formation. These kinetics are consistent with phosphorylation being the first step in anaerobic phenol degradation. Various cosubstrates failed so far to act as phosphoryl donor for net phosphorylation of phenol in cell extracts. Yet, cells anaerobically grown with phenol contained an enzyme that catalyzed an isotope exchange between [U-14C]phenol and phenylphosphate. This transphosphorylation activity was anaerobically induced by phenol but was stable under aerobic conditions and required Mn2+ and polyethylene glycol. Activity was optimal at pH 5.5 and half-maximal with 0.6 mM Mn2+, 0.2 mM phenylphosphate, and 1 mM phenol. It is proposed that the phenol exchange/transphosphorylation reaction is catalyzed as partial reaction by an inducible phenol phosphorylating enzyme. The isotope exchange demands that a phosphorylated enzyme was formed in the course of the reaction, which might be similar to the phosphotransferase system of sugar transport.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-072X
    Keywords: Glutaryl-CoA dehydrogenase ; Glutaconyl-CoA decarboxylase ; Pseudomonas sp. ; Phototrophic proteobacteria ; Anaerobic degradation of benzoate ; FAD ; Ferricenium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cell-free extracts of Pseudomonas sp. strains KB 740 and K 172 both contained high levels of glutaryl-CoA dehydrogenase when grown anaerobically on benzoate or other aromatic compounds and with nitrate as electron acceptor. These aromatic compounds have in common benzoyl-CoA as the central aromatic intermediate of anerobic metabolism. The enzymatic activity was almost absent in cells grown aerobically on benzoate regardless whether nitrate was present. Glutaryl-CoA dehydrogenase activity was also detected in cell-free extracts of Rhodopseudomonas, Rhodomicrobium and Rhodocyclus after phototrophic growth on benzoate. Parallel to the induction of glutaryl-CoA dehydrogenase as measured with ferricenium ion as electron acceptor, an about equally high glutaconyl-CoA decarboxylase activity was detected in cell-free extracts. The latter activity was measured with the NAD-dependent assay, as described for the biotin-containing sodium ion pump glutaconyl-CoA decarboxylase from glutamate fermenting bacteria. Glutaryl-CoA dehydrogenase was purified to homogeneity from both Pseudomonas strains. The enzymes catalyse the decarboxylation of glutaconyl-CoA at about the same rate as the oxidative decarboxylation of glutaryl-CoA. The green enzymes are homotetramers (m=170 kDa) and contain 1 mol FAD per subunit. No inhibition was observed with avidin indicating the absence of biotin. The N-terminal sequences of the enzymes from both strains are similar (65%).
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 153 (1990), S. 226-229 
    ISSN: 1432-072X
    Keywords: Pseudomonas ; 2-oxoglutarate dehydrogenase ; Lipoamide dehydrogenase ; Pyruvate dehydrogenase ; Aromatic compounds
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Several denitrifying Pseudomonas strains contained an NADP+-specific 2-oxoglutarate dehydrogenase, in contrast to an NAD+-specific pyruvate dehydrogenase, if the cells were grown anaerobically with aromatic compounds. With non-aromatic substrates or after aerobic growth the coenzyme specificity of 2-oxoglutarate dehydrogenase changed to NAD+-specificity. The reaction stoichiometry and the apparent K m-values of the enriched enzymes were determined: pyruvate 0.5 mM, coenzyme A 0.05 mM, NAD+ 0.25 mM; 2-oxoglutarate 0.6 mM, coenzyme A 0.05 mM, NADP+ 0.03 mM. Isocitrate dehydrogenase was NADP+-specific. The findings suggest that these strains contained at least two lipoamide dehydrogenases, one NAD+-specific, the other NADP+-specific.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-072X
    Keywords: Phenylacetate ; 4-Hydroxyphenylacetate ; Phenylglyoxylate ; Alpha-Oxidation ; Pseudomonas ; Oxidoreductase ; CoA ligase ; Benzoyl-CoA ; Anaerobic aromatic metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Anaerobic degradation of (4-hydroxy)phenylacetate in denitrifying Pseudomonas sp. was investigated. Evidence is presented for α-oxidation of the coenzyme A (CoA)-activated carboxymethyl side chain, a reaction which has not been described. The C6−C2 compounds are degraded to benzoyl-CoA and furtheron to CO2 via the following intermediates: Phenylacetyl-CoA, phenylglyoxylate, benzoyl-CoA plus CO2; 4-hydroxyphenylacetyl-CoA, 4-hydroxyphenylglyoxylate, 4-hydroxybenzoyl-CoA plus CO2, benzoyl-CoA. Trace amounts of mandelate possibly derived from mandelyl-CoA were detected during phenylacetate degradation in vitro. The reactions are catalyzed by (i) phenylacetate-CoA ligase which converts phenylacetate to phenylacetyl-CoA and by a second enzyme for 4-hydroxyphenylacetate; (ii) a (4-hydroxy)-phenylacetyl-CoA dehydrogenase system which oxidizes phenylacetyl-CoA to (4-hydroxy)phenylglyoxylate plus CoA; and (iii) (4-hydroxy)phenylglyoxylate: acceptor oxidoreductase (CoA acylating) which catalyzes the oxidative decarboxylation of (4-hydroxy)phenylglyoxylate to (4-hydroxy)benzoyl-CoA and CO2. (iv) The degradation of 4-hydroxyphenylacetate in addition requires the reductive dehydroxylation of 4-hydroxybenzoyl-CoA to benzoyl-CoA, catalyzed by 4-hydroxybenzoyl-CoA reductase (dehydroxylating). The whole cell regulation of these enzyme activities supports the proposed pathway. An ionic mechanism for anaerobic α-oxidation of the CoA-activated carboxymethyl side chain is proposed. Phenylacetic acids are plant constituents and in addition are formed from a large variety of natural aromatic compounds by microorganisms; their degradation therefore plays a significant role in nature, as illustrated in the preceding paper (Mohamed and Fuchs 1993). We have investigated and purified an enzyme which catalyzes the first step in the anaerobic degradation of phenylacetate in a denitrifying Pseudomonas sp. Phenylacetate is converted to phenylacetyl-CoA by phenylacetate-CoA ligase (AMP forming). The postulated function of this enzyme is corroborated by the strict regulation of its expression. 4-Hydroxyphenylacetate appears to be similarly activated by an independent enzyme prior to further degradation. We have suggested before that phenylacetyl-CoA is anaerobically converted by α-oxidation of the side chain to phenylglyoxylate1, which is oxidatively decarboxylated to benzoyl-CoA plus CO2 (Seyfried et al. 1991; Dangel et al. 1991). 4-Hydroxyphenylacetate was proposed to be similarly oxidized to 4-hydroxybenzoyl-CoA plus CO2, followed by reductive dehydroxylation to benzoyl-CoA. The evidence was not presented in full, and the crucial α-oxidation was not demonstrated in vitro. We present here ample evidence for this pathway. A hypothetical mechanism is proposed by which the oxidation of the α-methylene group to an α-carbonyl group may occur.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-072X
    Keywords: Anaerobic phenol metabolism ; Pseudomonas ; Phenylphosphate ; Phenol ; Phenol kinase ; Phenylphosphate carboxylase ; Phosphotransferase system
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Anaerobic phenol degradation has been shown to proceed via carboxylation of phenol to 4-hydroxybenzoate. However, in vitro the carboxylating enzyme was inactive with phenol; only phenylphosphate (phosphoric acid monophenyl ester) was readily carboxylated. We demonstrate in a denitrifying Pseudomonas strain that phenylphosphate is the first detectable product formed from phenol in whole cells and that subsequent phenylphosphate consumption parallels 4-hydroxybenzoate formation. These kinetics are consistent with phosphorylation being the first step in anaerobic phenol degradation. Various cosubstrates failed so far to act as phosphoryl donor for net phosphorylation of phenol in cell extracts. Yet, cells anaerobically grown with phenol contained an enzyme that catalyzed an isotope exchange between [U-14C]phenol and phenylphosphate. This transphosphorylation activity was anaerobically induced by phenol but was stable under aerobic conditions and required Mn2+ and polyethylene glycol. Activity was optimal at pH 5.5 and half-maximal with 0.6 mM Mn2+, 0.2 mM phenylphosphate, and 1 mM phenol. It is proposed that the phenol exchange/transphosphorylation reaction is catalyzed as partial reaction by an inducible phenol phosphorylating enzyme. The isotope exchange demands that a phosphorylated enzyme was formed in the course of the reaction, which might be similar to the phosphotransferase system of sugar transport.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-072X
    Keywords: Aromatic compounds ; Resorcinol ; Resorcyclic acids ; 1,3-Benzenediol ; 1,3-Cyclohexanedione ; Resorcinol reductase ; 2,4-Dihydroxybenzoic acid decarboxylase ; 2,6-Dihydroxybenzoic acid decarboxylase ; 1,3-Cyclohexanedione hydrolase ; 5-Oxocaproic acid ; Clostridium ; Denitrifying ; Anaerobic aromatic metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The anaerobic metabolism of 2,4- and 2,6-dihydroxybenzoic acid (beta- and gamma-resorcyclic acid) and 1,3-benzenediol (resorcinol) was investigated in a fermenting coculture of a Clostridium sp. with a Campylobacter sp. (Tschech A and Schink B (1985) Arch Microbiol 143: 52–59) and in a newly isolated denitrifying gram-negative bacterium. The enzymes of this pathway were searched for and partly characterized in vitro. It is shown that resorcyclic acids are decarboxylated in both organisms by specific enzymes, 2,4- or 2,6-dihydroxybenzoic acid decarboxylase. In the fermenting bacterium, the aromatic product, 1,3-benzenediol, is reduced by 1,3-benzenediol (resorcinol) reductase to the non-aromatic 1,3-cyclohexanedione; the novel enzyme which catalyzes the two-electron-reduction of the aromatic nucleus is oxygen-sensitive and uses reduced methyl viologen as artificial electron donor. The cyclic dione is then hydrolytically cleaved to 5-oxocaproic acid by 1,3-cyclohexanedione hydrolase. The denitrifying bacterium did not metabolize 1,3-cyclohexanedione, and the enzymes metabolizing 1,3-benzenediol or 1,3-cyclohexanedione were not detected. It is concluded that two different pathways of anaerobic 1,3-benzenediol metabolism exist.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 155 (1991), S. 238-248 
    ISSN: 1432-072X
    Keywords: Pseudomonas ; Paracoccus ; Cresols ; Dimethylphenols ; p-Cresol methylhydroxylase ; o-Cresol carboxylation ; 4-Hydroxy-3-methylbenzoyl-CoA reductase (dehydroxylating) ; 3-Methylbenzoyl-CoA ; Anaerobic aromatic metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The initial reactions in anaerobic metablism of methylphenols (cresols) and dimethylphenols were studied with denitrifying bacteria. A newly isolated strain, possibly a Paracoccus sp., was able to grow on o-or p-cresol as sole organic substrate with a generation time of 11 h; o-or p-cresol was completely oxidized to CO2 with nitrate being reduced to N2. A denitrifying Pseudomonas-like strain oxidized m-or p-cresol as the sole organic growth substrate completely to CO2 with a generation time of 14 h. Demonstration of intermediates and/or in vitro measurement of enzyme activities suggest the following enzymatic steps: (1) p-Cresol was metabolized by both strains via benzoyl-CoA as central intermediate as follows: p-cresol → 4-OH-benzaldehyde → 4-OH-benzoate → 4-OH-benzoly-CoA → benzoyl-CoA. Oxidation of the methyl group to 4-OH-benzaldehyde was catalyzed by p-cresol methylhydroxylase. After oxidation of the aldehyde to 4-OH-benzoate, 4-OH-benzoyl-CoA is formed by 4-OH-benzoyl-CoA synthetase; subsequent reductive dehydroxylation of 4-OH-benzoyl-CoA to benzoyl-CoA is catalyzed by 4-OH-benzoyl-CoA reductase (dehydroxylating). (2) o-Cresol was metabolized in the Paracoccus-like strain via 3-CH3-benzoyl-CoA as central intermediate as follows: o-cresol → 4-OH-3-CH3-benzoate → 4-OH-3-CH3-benzoyl-CoA → 3-CH3-benzoyl-CoA. The following enzymes were demonstrated: (a) An enzyme catalyzing an isototope exchange reaction between 14CO2 and the carboxyl of 4-OH-3-CH3-benzoate; this activity is thought to be a partial reaction catalyzed by an o-cresol carboxylase. (b) 4-OH-3-CH3-benzoyl-CoA synthetase (AMP-forming) activating the carboxylation product 4-OH-3-CH3-benzoate to its coenzyme A thioester. (c) 4-OH-3-CH3-benzoyl-CoA reductase (dehydroxylating) catalyzing the reductive dehydroxylation of the 4-hydroxyl group with reduced benzyl viologen as electron donor to yield 3-CH3-benzoyl-CoA. This thioester may also be formed by action of a coenzyme A ligase when 3-CH3-benzoate is metabolized. 2,4-Dimethylphenol was metabolized via 4-OH-3-CH3-benzoate and further to 3-CH3-benzoyl-CoA. (3) The initial reactions of anaerobic metabolism of m-cresol in the Pseudomonas-like strain were not resolved. No indication for the oxidation of the methyl group nor for the carboxylation of m-cresol was found. In contrast, 2,4-and 3,4-dimethylphenol were oxidized to 4-OH-3-CH3-and 4-OH-2-CH3-benzoate, respectively, probably initiated by p-cresol methylhydroxylase; however, these compounds were not metabolized further.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...