GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Elsevier BV ; 1991
    In:  Journal of Biological Chemistry Vol. 266, No. 11 ( 1991-04), p. 6919-6927
    In: Journal of Biological Chemistry, Elsevier BV, Vol. 266, No. 11 ( 1991-04), p. 6919-6927
    Type of Medium: Online Resource
    ISSN: 0021-9258
    Language: English
    Publisher: Elsevier BV
    Publication Date: 1991
    detail.hit.zdb_id: 2141744-1
    detail.hit.zdb_id: 1474604-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1990
    In:  Proceedings of the National Academy of Sciences Vol. 87, No. 3 ( 1990-02), p. 1018-1022
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 87, No. 3 ( 1990-02), p. 1018-1022
    Abstract: Photocycle and flash-induced proton release and uptake were investigated for bacteriorhodopsin mutants in which Asp-85 was replaced by Ala, Asn, or Glu; Asp-212 was replaced by Asn or Glu; Asp-115 was replaced by Ala, Asn, or Glu; Asp-96 was replaced by Ala, Asn, or Glu; and Arg-82 was replaced by Ala or Gln in dimyristoylphosphatidylcholine/3-[(3-cholamidopropyl)dimethylammonio]-1- propanesulfonate micelles at pH 7.3. In the Asp-85----Ala and Asp-85----Asn mutants, the absence of the charged carboxyl group leads to a blue chromophore at 600 and 595 nm, respectively, and lowers the pK of the Schiff base deprotonation to 8.2 and 7, respectively, suggesting a role for Asp-85 as counterion to the Schiff base. The early part of the photocycles of the Asp-85----Ala and Asp-85----Asn mutants is strongly perturbed; the formation of a weak M-like intermediate is slowed down about 100-fold over wild type. In both mutants, proton release is also slower but clearly precedes the rise of M. The amplitude of the early (less than 0.2 microseconds) reversed photovoltage component in the Asp-85----Asn mutant is very large, and the net charge displacement is close to zero, indicating proton release and uptake on the cytoplasmic side of the membrane. The data suggest an obligatory role for Asp-85 in the efficient deprotonation of the Schiff base and in the proton release phase, probably as proton acceptor. In the Asp-212----Asn mutant, the rise of the absorbance change at 410 nm is slowed down to 220 microsecond, its amplitude is small, and the release of protons is delayed to 1.9 ms. The absorbance changes at 650 nm indicate perturbations in the early time range with a slow K intermediate. Thus Asp-212 also participates in the early events of charge translocation and deprotonation of the Schiff base. In the Arg-82----Gln mutant, no net transient proton release was observed, whereas, in the Arg-82----Ala mutant, uptake and release were reversed. The pK shift of the purple-to-blue transition in the Asp-85----Glu, Arg-82----Ala, and Arg-82----Gln mutants and the similarity in the photocycle and photoelectrical signals of the Asp-85----Ala, Asp-85----Asn, and Asp-212----Asn mutants suggest the interaction between Asp-85, Arg-82, Asp-212, and the Schiff base as essential for proton release.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1990
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1992
    In:  Proceedings of the National Academy of Sciences Vol. 89, No. 4 ( 1992-02-15), p. 1219-1223
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 89, No. 4 ( 1992-02-15), p. 1219-1223
    Abstract: Six bacterioopsin mutants containing either single amino acid deletions (delta A84, delta L87), insertions (delta 85A, delta 88A), or both deletions and insertions (delta A84/delta 88A, delta 85A/delta L87) within the first two turns of transmembrane helix C, starting from the extracellular side, have been prepared. The mutant apoproteins refold in phospholipid/detergent micelles and display secondary structures similar to that of the wild type. However, the mutants delta 88A and delta A84/delta 88A do not form a chromophore with retinal. The regenerated chromophore of delta 85A displays absorption maxima and retinal isomer compositions in the dark- and light-adapted states similar to those of the wild type. In delta A84, delta L87, and delta 85A/delta L87 these chromophore properties are altered, and the structures are less stable than that of the wild type, as shown by an enhanced rate of reaction with hydroxylamine in the dark, an increased pKa of the denaturation at acidic pH, and a decreased pKa of Schiff base deprotonation. Proton translocation is abolished in the delta A84 and delta 85A/delta L87 mutants, whereas in delta 85A and delta L87 the activity is reduced to about 25% of the wild-type value at pH 6. The overall properties of the delta 85A, delta 85A/delta L87, and delta L87 mutants indicate that the deletions and/or insertions result in displacement of residues Arg-82, Asp-85, or Asp-96, respectively, which participate in proton translocation. The results are compatible with a helical structure for transmembrane segment C and emphasize the flexibility of intramolecular contacts in bacteriorhodopsin.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1992
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Society for Microbiology ; 1993
    In:  Journal of Bacteriology Vol. 175, No. 6 ( 1993-03), p. 1555-1560
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 175, No. 6 ( 1993-03), p. 1555-1560
    Abstract: Site-specific mutagenesis has identified amino acids involved in bR proton transport. Biophysical studies of the mutants have elucidated the roles of two membrane-embedded residues: Asp-85 serves as the acceptor for the proton from the isomerized retinylidene Schiff base, and Asp-96 participates in reprotonation of this group. The functions of Arg-82, Leu-93, Asp-212, Tyr-185, and other residues that affect bR properties when substituted are not as well understood. Structural characterization of the mutant proteins will clarify the effects of substitutions at these positions. Current efforts in the field remain directed at understanding how retinal isomerization is coupled to proton transport. In particular, there has been more emphasis on determining the structures of bR and its photointermediates. Since well-ordered crystals of bR have not been obtained, continued electron diffraction studies of purple membrane offer the best opportunity for structure refinement. Other informative techniques include solid-state nuclear magnetic resonance of isotopically labeled bR (56) and electron paramagnetic resonance of bR tagged with nitroxide spin labels (2, 3, 13, 15). Site-directed mutagenesis will be essential in these studies to introduce specific sites for derivatization with structural probes and to slow the decay of intermediates. Thus, combining molecular biology and biophysics will continue to provide solutions to fundamental problems in bR.
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1993
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1994
    In:  Proceedings of the National Academy of Sciences Vol. 91, No. 9 ( 1994-04-26), p. 4029-4033
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 91, No. 9 ( 1994-04-26), p. 4029-4033
    Abstract: A disulfide bond that is evidently conserved in the guanine nucleotide-binding protein-coupled receptors is present in rhodopsin between Cys-110 and Cys-187. We have replaced these two cysteine residues by alanine residues and now report on the properties of the resulting rhodopsin mutants. The mutant protein C110A/C187A expressed in COS cells resembles wild-type rhodopsin in the ground state. It folds correctly to bind 11-cis-retinal and form the characteristic rhodopsin chromophore. It is inert to hydroxylamine in the dark, and its stability to dark thermal decay is reduced, relative to that of the wild type, by a delta delta G not equal to of only -2.9 kcal/mol. Further, the affinities of the mutant and wild-type rhodopsins to the antirhodopsin antibody rho4D2 are similar, both in the dark and in light. However, the metarhodopsin II (MII) and MIII photointermediates of the mutant are less stable than those formed by the wild-type rhodopsin. Although the initial rates of transducin activation are the same for both mutant and wild-type MII intermediates at 4 degrees C, at 15 degrees C the MII photointermediate in the mutant decays more than 20 times faster than in wild type. We conclude that the disulfide bond between Cys-110 and Cys-187 is a key component in determining the stability of the MII structure and its coupling to transducin activation.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1994
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Elsevier BV ; 1990
    In:  Journal of Biological Chemistry Vol. 265, No. 22 ( 1990-08), p. 12995-12999
    In: Journal of Biological Chemistry, Elsevier BV, Vol. 265, No. 22 ( 1990-08), p. 12995-12999
    Type of Medium: Online Resource
    ISSN: 0021-9258
    Language: English
    Publisher: Elsevier BV
    Publication Date: 1990
    detail.hit.zdb_id: 2141744-1
    detail.hit.zdb_id: 1474604-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1990
    In:  Proceedings of the National Academy of Sciences Vol. 87, No. 11 ( 1990-06), p. 4103-4107
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 87, No. 11 ( 1990-06), p. 4103-4107
    Abstract: The retinylidene chromophore mutant (Y185F) of bacteriorhodopsin, in which Tyr-185 is substituted by phenylalanine, is examined and compared with wild-type bacteriorhodopsin expressed in Escherichia coli; both were reinstituted similarly in vesicles. The Y185F mutant shows (at least) two distinct spectra at neutral pH. Upon light absorption, the blue species (which absorbs in the red) behaves as if "dead"--i.e., neither its tyrosine nor its protonated Schiff base undergoes deprotonation nor does its tryptophan fluorescence undergo quenching. This result is unlike either the purple species (which absorbs in the blue) or wild-type bacteriorhodopsin expressed in E. coli. As the pH increases, both the color changes and the protonated Schiff base deprotonation efficiency suggest a blue-to-purple transition of the Y185F mutant near pH 9. If this blue-to-purple transition of Y185F corresponds to the blue-to-purple transition of purple-membrane (native) bacteriorhodopsin (occurring at pH 2.6) and of wild-type bacteriorhodopsin expressed in E. coli (occurring at pH 5), the protein-conformation changes of this transition as well as the protonated Schiff base deprotonation may be controlled not by surface pH alone, but rather by the coupling between surface potential and the general protein internal structure around the active site. The results also suggest that Tyr-185 does not deprotonate during the photocycle in purple-membrane bacteriorhodopsin.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1990
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1990
    In:  Proceedings of the National Academy of Sciences Vol. 87, No. 13 ( 1990-07), p. 4991-4995
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 87, No. 13 ( 1990-07), p. 4991-4995
    Abstract: The role of the intradiscal polypeptide loops in bovine rhodopsin has been investigated by deletions in the N-terminal tail and in loops B-C, D-E, and E-F as well as by single amino acid substitutions in the D-E loop. Mutants with three types of phenotypes were observed. Type I mutants showed a rhodopsin-like chromophore and glycosylation. Type II mutants did not regenerate the chromophore and showed abnormal glycosylation. Type III mutants showed poor chromophore regeneration and abnormal glycosylation. Reduced transducin activation was shown by some type I and III mutants. Single amino acid substitutions in the D-E loop gave mostly type I mutants. Deletions in loops B-C, D-E, and F-G gave type II mutants, whereas deletions in the N-terminal tail produced type III mutants. Systematic deletions of two adjacent amino acids in loop D-E indicated that the amino acid sequences 171-182 and 189-192 were essential to rhodopsin structure. Immunofluorescence double-staining and transmission electron microscopy of one type II mutant (with residues 189 and 190 deleted) showed that it was mostly in the endoplasmic reticulum, whereas the wild-type protein was in the plasma membrane. We conclude that the first step in the assembly of the rhodopsin molecule is the formation of a three-dimensional structure in the intradiscal domain involving the bulk of the out-of-the-membrane polypeptide segments followed by the linkage of Cys-110 and Cys-187 through a disulfide bond.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1990
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1991
    In:  Proceedings of the National Academy of Sciences Vol. 88, No. 3 ( 1991-02), p. 859-863
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 88, No. 3 ( 1991-02), p. 859-863
    Abstract: Bacteriorhodopsin (bR) was expressed in Halobacterium halobium by using a multicopy plasmid containing the bop gene. The plasmid contains pGRB1, a 1.8-kilobase-pair plasmid; a 70-base-pair fragment from ISH11, a recently characterized insertion sequence; and a 1.6-kilobase-pair fragment carrying the bop gene from H. halobium S9. When transformed with this plasmid, a bop- insertion mutant of H. halobium yielded purple (Pum+) colonies. The insertion at the chromosomal bop locus remained intact in transformed cells, indicating that the plasmid bop gene was responsible for the Pum+ phenotype. bR was induced in early stationary phase in both wild-type and transformed cells. The final level of bR in transformed cells was 25-40% of that in wild type. The lower level of expression was presumably due to plasmid instability. Purple membrane purified from transformed strains had absorption and visible CD properties similar to wild type and contained bR in a hexagonal lattice with the same unit-cell dimension as wild type. The structure of bR from wild-type and transformed strains was identical at a resolution of 7.2 A. When reconstituted into vesicles, the purple membrane from wild-type and transformed strains showed similar light-dependent proton-pumping activity.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1991
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1994
    In:  Proceedings of the National Academy of Sciences Vol. 91, No. 9 ( 1994-04-26), p. 4024-4028
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 91, No. 9 ( 1994-04-26), p. 4024-4028
    Abstract: Rhodopsin, the dim light photoreceptor of the rod cell, is an integral membrane protein that is glycosylated at Asn-2 and Asn-15. Here we report experiments on the role of the glycosylation in rhodopsin folding and function. Nonglycosylated opsin was prepared by expression of a wild-type bovine opsin gene in COS-1 cells in the presence of tunicamycin, an inhibitor of asparagine-linked glycosylation. The non-glycosylated opsin folded correctly as shown by its normal palmitoylation, transport to the cell surface, and the formation of the characteristic rhodopsin chromophore (lambda max, 500 nm) with 11-cis-retinal. However, the nonglycosylated rhodopsin showed strikingly low light-dependent activation of GT at concentration levels comparable with those of glycosylated rhodopsin. Amino acid replacements at positions 2 and 15 and the cognate tripeptide consensus sequence [Asn-2-- 〉 Gln, Gly-3-- 〉 Cys(Pro), Thr-4-- 〉 Lys, Asn-15-- 〉 Ala(Cys, Glu, Lys, Gln, Arg), Lys-16-- 〉 Cys(Arg), Thr-17-- 〉 Met(Val)] showed that the substitutions at Asn-2, Gly-3, and Thr-4 had no significant effect on the folding, cellular transport, and/or function of rhodopsin, whereas those at Asn-15 and Lys-16 caused poor folding and were defective in transport to the cell surface. Further, mutant pigments with amino acid replacements at Asn-15 and Thr-17 activated GT very poorly. We conclude that Asn-15 glycosylation is important in signal transduction.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1994
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...