GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 149 (1993), S. 87-94 
    ISSN: 1573-5036
    Keywords: aluminium ; calcium ; calcium pectate ; polygalacturonic acid ; solution pH
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Extracellular processes, particularly the adsorption of aluminium (Al) by pectate in the cell wall, have been proposed as important in the expression of Al toxicity to plant roots. In vitro studies were conducted on the effects of Al concentration (generally ≤ 32 μM), calcium (Ca) concentration (0.05 to 10 mM) and pH (3.2 to 5.4) on Al sorption by Ca pectate. There was a rapid reaction between Al and Ca pectate, there being no difference in Al remaining in solution after reaction times of 1 to 16 min, and only a slight decrease after 24 h. Increased Al concentration in solution increased linearly the sorption of Al by Ca pectate, with 70 to 84% of the Al originally in solution sorbed with ≤32 μM Al. In contrast, Al sorption decreased with increased Ca concentration in solution, and as pH decreased from 5.4 to 3.2. Only ≤30% of the sorbed Al was desorbed after 1 h by 1 mM CaCl2, 10 mM CaCl2 or 1 mM HCl. The amount of Al desorbed increased with a desorption period of 5 h, particularly with 1 mM HCl. These studies suggest that Al sorbed by Ca pectate in root cell walls is in equilibrium with Al in solution, and that Al toxicity is associated with the strong binding between Al and Ca pectate external to the cytoplasm.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: aluminium toxicity ; Arachis hypogaea L. ; Bradyrhizobium ; calcium ; magnesium ; solution culture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract While considerable information has been presented recently on the alleviating effects of calcium (Ca) on aluminium (Al) toxicity, the interaction between Ca and Al on nodulation and N2-fixation of legumes is little understood. A 28 d solution culture experiment using groundnut (Arachis hypogaea L.) cv. Matjam was conducted to evaluate the effects of four Ca concentrations and four Al levels on nodule development, N2-fixation and plant growth. The Ca concentrations were maintained at 500, 1000, 2500 or 5000 μM, and the sum of activities of monomeric Al species (ΣaAlmono) were 0, 15, 30 and 60 μM. With ΣaAlmono≥30 μM in solution, the time to appearance of the first nodule increased, and, with 60 μM ΣaAlmono in solution, plants remained chlorotic throughout the experiment. Activities≥30 μM reduced nodule number and nodule dry mass per plant, particularly with high (5000 μM) Ca in solution. Also, plant top growth was decreased at ΣaAlmono≥30 μM; the effect only being alleviated by 1000 μM Ca at 30 μM ΣaAlmono. The Ca concentration in the youngest expanded leaf (YEL) increased with increased Ca concentration in solution, but was little affected by Al treatment. Nitrogen concentrations mirrored treatment effects on nodule number and nodule dry mass; Al in solution decreased the N concentration particularly with 5000 μM Ca in solution. Furthermore, increased Ca and Al in solution decreased the Mg concentration in the YEL. This suggested that the absence of any alleviating effect of Ca and Al toxicity (indeed the opposite effect was often observed) resulted from interference in Mg nutrition.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...