GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Avena (acid-growth)  (1)
  • EPR  (1)
  • 1990-1994  (2)
  • 1
    ISSN: 1432-2048
    Keywords: Acid-extension ; Acid-growth theory ; Avena (acid-growth) ; Elongation growth ; pH profile (cell elongation) ; Pisum (acid-growth) ; Zea (acid-growth)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The acid-growth theory predicts that a solution with a pH identical to that of the apoplast of auxintreated tissues (4.5–5.0) should induce elongation at a rate comparable to that of auxin. Different pH profiles for elongation have been obtained, however, depending on the type of pretreatment between harvest of the sections and the start of the pH-incubations. To determine the acid sensitivity under in vivo conditions, oat (Avena sativa L.) coleoptile, maize (Zea mays L.) coleoptile and pea (Pisum sativum L.) epicotyl sections were abraded so that exogenous buffers could penetrate the free space, and placed in buffered solutions of pH 3.5–6.5 without any preincubation. The extension, without auxin, was measured over the first 3 h. Experiments conducted in three laboratories produced similar results. For all three species, sections placed in buffer without pretreatment elongated at least threefold faster at pH 5.0 than at 6.0 or 6.5, and the rate elongation at pH 5.0 was comparable to that induced by auxin. Pretreatment of abraded sections with pH-6.5 buffer or distilled water adjusted to pH 6.5 or above gave similar results. We conclude that the pH present in the apoplast of auxin-treated coleoptile and stems is sufficiently low to account for the initial growth response to auxin.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5079
    Keywords: oxygen evolving complex (OEC) ; EPR ; EXAFS
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Our recent EPR and EXAFS experiments investigating the structure of the oxygen-evolving complex of PS II are discussed. PS II treatments which affect the cofactors calcium and chloride have been used to poise samples in modified forms of the S-states, S1, S2 and S3. X-ray absorption studies indicate a similar overall structure for the manganese complex between treated and native samples although the influence of the treatments and cofactors is observed. Manganese oxidation (or oxidation of a ligand to the manganese cluster) is indicated to occur on each of the transitions S1 →S2 and S2 →S3 in these modified samples. The cluster appears to contain at least two inequivalent Mn-Mn pairs. In the native samples the Mn-Mn distance is 2.7 Å, but in samples where the calcium site is affected, one of the pairs has a 3.0 Å Mn-Mn distance. The intensity of the 3.3/3.6 Å interaction is reduced on sodium chloride treatment (calcium depletion) perhaps indicating calcium binding close to the manganese cluster. From EPR data we also propose that treatments which affect calcium and chloride binding cause a modification of the native S2 state, slow the reduction of Yz • and allow an S3 EPR signal to be observed following illumination. The origin of the S3 EPR signal, a modified S3 or S2 X• where X• is an organic radical of unknown charge, is discussed in relation to the results from the EXAFS studies.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...