GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 31P-NMR  (1)
  • 1990-1994  (1)
Document type
Publisher
Years
  • 1990-1994  (1)
Year
  • 1
    ISSN: 1432-1017
    Keywords: 31P-NMR ; Chlamydomonas ; Saturation transfer ; Chloroplast ; Intracellular pH
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract ATP synthesis and consumption in respiring cells of the green alga Chlamydomonas reinhardtii were measured with 31P in vivo NMR saturation transfer experiments to determine the intracellular compartmentation of inorganic phosphate. Most of the observed flux towards ATP synthesis was catalyzed by the coupled enzymes glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase (GAPDH/PGK). The attribution of the measured flux to these enzymes is supported by the observation, that (i) the magnetization transfer was strongly reduced by iodoacetate, an irreversible inhibitor of GAPDH and that (ii) the unidirectional flux was much greater than the net flux through the mitochondrial F0F1-ATPase as determined by oxygen consumption measurements. In Chlamydomonas, glycolysis is divided into a chloroplastidic and a cytosolic part with the enzymes GAPDH/PGK being located in the chloroplast stroma (Klein 1986). The 31P-NMR signal of inorganic phosphate must, therefore, originate from the chloroplast. The life time of the magnetic label transferred to Pi by these enzymes is too short for it to be transported to the cytosol via the phosphate translocator of the chloroplast envelope. When the intracellular compartmentation of Pi was taken into consideration the calculated unidirectional ATP synthesis rate was equal to the consumption rate, indicating operation of GAPDH/PGK near equilibrium. The assignment of most of the intracellular Pi to the chloroplast is in contradiction to earlier reports, which attributed the Pi signal to the cytosol. This is of special interest for the use of the chemical shift of the Pi signal as an intracellular pH-marker in plant cells.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...