GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Publishing Ltd  (2)
  • 1990-1994  (2)
Document type
Publisher
Years
Year
  • 1
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The seemingly delicate, strand-like pseudopodia of Astrammina rara, a carnivorous benthic foraminiferan, adhere to and withstand the rigorous movements of meiofaunal prey. Previous electron microscopic studies identified two novel structures that might account for the unusual tensile properties of these pseudopodia: 1) an extensive, coiled microtubule cytoskeleton and 2) a fibrous extracellular matrix vesting the pseudopodial surface. In the present study, we found that pseudopodial networks microsurgically removed from A. rara's cell body captured Artemia metanauplii as efficiently as intact organisms, and therefore used them to test the role of microtubules and extracellular matrix components in augmenting pseudopodial strength. Agents that specifically disassemble micro-tubules (1 mM colchicine or 20 μM nocodazole) or generally disrupt pseudopodial integrity (heat, 10 mM formaldehyde, 1 mg/ml saponin) failed to inhibit prey capture. All of these treatments left the extracellular matrix intact as revealed by immunofluorescence and scanning electron microscopy. The elastic and tensile properties of the extracellular matrix, isolated by solubilization of pseudopodial cytonhsm using the nonionic detergent Triton X-100, were similar to those of intact pseudopodial networks when assayed with calibrated microneedles or a flexible rubber substrate. These observations indicate that A. rara uses a fibrous extracellular matrix to augment cytoplasmic tensile properties.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 40 (1993), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: . The fine structure, elastic properties, and distribution of the fibrous, meshlike cement (bioadhesive) were studied for the test of the antarctic agglutinated foraminiferan Astrammina rara. Grain-size analysis of particles incorporated into the test compared with adjacent sediment indicates that A. rara is grain-size selective. Fractured tests curl inward, suggesting that the test is under tension—an impression substantiated by micromanipulation observations. Changes in test appearance were examined by scanning electron microscopy after sequential chemical treatments combined with ultrasonication. Organic fibrils securing fine-grained particulates on the test exterior were removed during initial sonication. A veil of fibrous organic material lining the test interior (i.e. inner organic lining) was removed by treatment with a nonionic detergent, revealing ligamentous cables of bioadhesive securely joining large grains. These cables are partially disrupted by treatment with sodium dodecyl sulfate, and further disrupted by disulfide reducing agents, suggesting that protein is an integral adhesive component. The large detrital grains incorporated into the test are arranged in an interlocked, optimally packed fashion. Together, these observations indicate that the seemingly simple spherical architecture of A. rara's test is in fact quite complex, consisting of large grains compressed by tensile cables of a proteinaceous bioadhesive, with additional rigidity supplied by fine particulate “mortar” deposited externally.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...