GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (2)
  • 1990-1994  (2)
Document type
Publisher
Years
Year
  • 1
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Magnetization measurements have been done at 1.5 K and magnetic fields up to 7 T by using extraction method on the samples with x=0.0055, 0.048, 0.063 for Zn1−xCoxS and x=0.0097, 0.030, 0.037, 0.042 for Zn1−xCoxSe. In both Co-based systems, the magnetization increases with x. A modified Brillouin function fits the data and the fitting parameters T0( (approximately-greater-than) 0) and Seff are obtained. These results reflect that there exists a strong antiferromagnetic interaction among Co++ ions and the antiferromagnetic interaction in Zn1−xCoxSe is stronger than that in Zn1−xCoxS. Magnetic susceptibility was measured in the temperature range 1.5 K≤T≤300 K by using a vibrating-sample magnetometer. The susceptibility displays a high-temperature Curie–Weiss behavior. From quantitative analysis we obtain the nearest-neighbor Co++–Co++ exchange integral constant J1/kB for sulfides and selenides to be −51±6 K and −57±8 K, respectively. This value is at least three times as large as that in their Mn-based counterparts, and we confirm that the antiferromagnetic interaction is stronger in Zn1−xCoxSe than in Zn1−xCoxS. By using our results in conjunction with a direct measurement of the nearest-neighbor exchange JNN from recent inelastic neutron scattering for Zn1−xCoxS, we obtain an estimate of the next-nearest-neighbor exchange constant J2/kB = −8 K.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 65 (1994), S. 1930-1932 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A metal-semiconductor-metal (MSM) In0.53Ga0.47As photodiode using a transparent cadmium tin oxide (CTO) layer for the interdigitated electrodes was investigated. The transparent contact prevents shadowing of the active layer by the electrodes, thus allowing greater collection of incident light. The barrier height (φBn) of CTO on i-In0.52Al0.48As was determined to be 0.47 eV, while the Ti/Au barrier height was 0.595 eV. The reduced barrier height for CTO is caused by tunneling through the sputter-damaged cap layer. Responsivity for 1.3 μm incident light was 0.49 and 0.28 A/W, respectively, for the CTO and Ti/Au MSM photodiodes. No antireflection (AR) coating was utilized over the bare semiconductor surface. The CTO MSM photodiode shows a factor of almost two improvement in responsivity over conventional Ti/Au MSM photodiodes. © 1994 American Institue of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...