GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (13)
  • 1975-1979  (1)
Document type
Keywords
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 80 (1991), S. 567-589 
    ISSN: 1437-3262
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Abstract The areas of marine pollen deposition are related to the pollen source areas by aeolian and fluvial transport regimes, whereas wind transport is much more important than river transport. Pollen distribution patterns ofPinus, Artemisia, Chenopodiaceae-Amaranthaceae, and Asteraceae Tubuliflorae trace atmospheric transport by the northeast trades. Pollen transport by the African Easterly Jet is reflected in the pollen distribution patterns of Chenopodiaceae-Amaranthaceae, Asteraceae Tubuliflorae, andMitracarpus. Grass pollen distribution registers the latitudinal extension of Sahel, savannas and dry open forests. Marine pollen distribution patterns of Combretaceae-Melastomataceae,Alchornea, andElaeis reflect the extension of wooded grasslands and transitional forests. Pollen from the Guinean-Congolian/Zambezian forest and from the Sudanian/Guinean vegetation zones mark the northernmost extension of the tropical rain forest.Rhizophora pollen in marine sediments traces the distribution of mangrove swamps. Only near the continent, pollen ofRhizophora, Mitracarpus, Chenopodiaceae-Amaranthaceae, and pollen from the Sudanian and Guinean vegetation zones are transported by the Upwelling Under Current and the Equatorial Under Current, where those currents act as bottom currents. The distribution of pollen in marine sediments, reflecting the position of major climatic zones (desert, dry tropics, humid tropics), can be used in tracing climatic changes in the past.
    Abstract: Résumé Les aires marines dans lesquelles se déposent les pollens sont en relation avec les aires continentales nourricières par l'intermédiaire des régimes de transport fluviatile et éolien, ce dernier jouant le rôle prépondérant. La distribution pollinique dePinus, Artenisia, des Chenopodiaceae-Amaranthaceae et Asteraceae-Tuliliflorae reflète un transport aérien du nord-est. Le transport pollinique par l'African Easterly Jet se traduit dans la distribution pollinique des Chenopodiaceae-Amaranthaceae, des Asteraceae-Tubuliflorae et deMitrocarpus. La distribution des pollens de graminées enregistre l'extension en latitude du Sahel, de la savane et de la forêt claire. La distribution dans la mer des pollens de Combretaceae-Melastomatoceae, d'Alchornea et d'Elaeis traduit l'extension des savanes boisées et des forêts de transition. Les pollens provenant de la forêt guinéennecongolaise-zambésienne et des zones végétales du Soudan et de Guinée marquent la limite septentrionale de la forêt humide tropicale. Les pollens deRhizophora dans les sédiments marins dessinent la distribution des mangroves. Ce n'est qu'à proximité du continent que les pollen deRizophora, deMitracarpus, des Chenopodiceae-Amaranthaceae ainsi que les pollens originaires des zones végétales du Soudan et de Guinée sont transportés par l'«Upwelling Under Current» et l'«Equatorial Under Current», qui se comportent là comme courants de fond. La distribution des pollens dans les sédiments marins, reflétant la position des zones climatiques principales (désertique, tropicale sèche, tropicale humide) peut être utilisée dans les reconstitutions paléoclimatiques.
    Notes: Zusammenfassung Vor der afrikanischen Küste zwischen Marokko und Kamerun gelangen Pollenkörner in die marinen Sedimente, die durch Wind oder mit dem Wasser von Flüssen herantransportiert worden sind. Dabei hat Windtransport eine größere Bedeutung als Flußtransport. Durch die Häufigkeit und Verbreitung der Pollenkörner (Isopollenkarten) vonPinus, Artemisia, Chenopodiaceae/Amaranthaceae und den Asteraceae Tubuliflorae in den marinen Sedimenten wird gezeigt, daß der Transport in diesen Fällen durch den Nordost-Passat erfolgt und daß seine Transportleistung sehr groß ist. Die Transportwirkung des African Easterly Jet wird aus den Isopollenkarten für Chenopodiaceae/Amaranthaceae, Asteraceae Tubuliflorae undMitracarpus abgeleitet. Die Häufigkeit des Pollens von Gräsern hält sich eng an die Grenzen der Sahel-Zone, der Savannen sowie der offenen Trockenwälder und kann deswegen als Zeiger für die Lage dieser Vegetations- und Klimazonen verwendet werden. Die Lage der baumreichen Savannen und der Wälder im Übergang zum tropischen Regenwald spiegelt sich in der Häufigkeit der Pollenanteile von Combretaceae/Melastomataceae,Alchornea undElaeis wider. Die Nordgrenze tropischer Regenwälder kommt in den Isopollenkarten für die Häufigkeit der Arten guineisch-kongolesischer Baumarten sowie der Pflanzen der sudanischen und guineischen Vegetationszonen zum Ausdruck. Für die Verbreitung von Mangroven werden die Pollenanteile vonRhizophora herangezogen. Nahe der Küste kann der Pollen vonRhizophora, Mitracarpus, Chenopodiaceae/Amaranthaceae und von Arten der sudanischen und guineischen Vegetationszonen auch mit dem »Upwelling Under Current« und dem »Equatorial Under Current« transportiert werden, sofern diese als Bodenströme auftreten. Die Ergebnisse zeigen, daß die Verteilung der Pollenkörner in marinen Sedimenten die Lage der wichtigsten Klimazonen (Wüsten, trockene und feuchte Tropen) widergibt und deswegen für paläoklimatische Untersuchungen angewendet werden kann.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-6278
    Keywords: Marine palynology ; Tropical rain forest ; North-west Africa ; Brunhes chron
    Source: Springer Online Journal Archives 1860-2000
    Topics: Archaeology , Biology
    Notes: Abstract Palynological data of the marine core M 16415-2 show latitudinal shifts of the northern fringe of the tropical rain forest in north-west Africa during the last 700 ka. Savanna and dry open forest expanded southwards and tropical rain forest expanded northwards during dry and humid periods, respectively. Until 220 ka B.P., the tropical rain forest probably kept its zonal character in West Africa during glacials and interglacials. It is only during the last two glacial periods that the rain forest possibly fragmented into refugia. Throughout the Brunhes chron, pollen and spore transport was mainly by trade winds.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1570-7458
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Description / Table of Contents: Résumé Ce travail montre que l'isolement reproductif entre Tetranychus uriticae Koch et Tetranychus cinnabarinus (Boisduval), est loin d'être complet. L'auteur a obtenu des souches hybrides présentant les caractéristiques morphologiques de T. cinnabarinus, mais homozygotes pour un gêne marqueur provenant de T. urticae. De plus, une diminution de la photopériode entraîne l'entrée en diapause des espèces provenant de régions à climat froid (T. urticae), mais aussi d'une population de T. cinnabarinus. Il est finalemant proposé de considérer Tetranychus cinnabarinus (Boisduval) Boudreaux, 1956, comme un synonyme de Tetranychus urticae Koch, 1836.
    Notes: Abstract It was found that the reproductive separation between the two-spotted spider mite (Tetranychus urticae Koch) and the carmine spider mite (Tetranychus cinnabarinus (Boisduval) is far from complete. Hybrid strains were established which possessed the morphological characteristics of T. cinnabarinus, but which were homozygous for a marker gene originating from T. urtica. In addition, short-day treatment leads to diapause not only in the species from cold climates (T. urticae), but also in a population of T. cinnabarinus. It is questioned whether T. cinnabarinus deserves ranking at species level.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-07-30
    Description: The areas of marine pollen deposition are related to the pollen source areas by aeolian and fluvial transport regimes, whereas wind transport is much more important than river transport. Pollen distribution patterns ofPinus, Artemisia, Chenopodiaceae-Amaranthaceae, and Asteraceae Tubuliflorae trace atmospheric transport by the northeast trades. Pollen transport by the African Easterly Jet is reflected in the pollen distribution patterns of Chenopodiaceae-Amaranthaceae, Asteraceae Tubuliflorae, andMitracarpus. Grass pollen distribution registers the latitudinal extension of Sahel, savannas and dry open forests. Marine pollen distribution patterns of Combretaceae-Melastomataceae,Alchornea, andElaeis reflect the extension of wooded grasslands and transitional forests. Pollen from the Guinean-Congolian/Zambezian forest and from the Sudanian/Guinean vegetation zones mark the northernmost extension of the tropical rain forest.Rhizophora pollen in marine sediments traces the distribution of mangrove swamps. Only near the continent, pollen ofRhizophora, Mitracarpus, Chenopodiaceae-Amaranthaceae, and pollen from the Sudanian and Guinean vegetation zones are transported by the Upwelling Under Current and the Equatorial Under Current, where those currents act as bottom currents. The distribution of pollen in marine sediments, reflecting the position of major climatic zones (desert, dry tropics, humid tropics), can be used in tracing climatic changes in the past.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Leroy, Suzanne A G; Dupont, Lydie M (1994): Development of vegetation and continental aridity in northwestern Africa during the Late Pliocene: the pollen record of ODP 658. Palaeogeography, Palaeoclimatology, Palaeoecology, 109(2-4), 295-316, https://doi.org/10.1016/0031-0182(94)90181-3
    Publication Date: 2024-07-19
    Description: A 200 m long marine pollen record from ODP Site 658 (21°N, 19°W) reveals cyclic fluctuations in vegetation and continental climate in northwestern Africa from 3.7 to 1.7 Ma. These cycles parallel oxygen isotope stages. Prior to 3.5 Ma, the distribution of tropical forests and mangrove swamps reached Cape Blanc, 5°N of the present distribution. Between 3.5 and 2.6 Ma, forests occurred at this latitude during irregular intervals and nearly disappeared afterwards. Likewise, a Saharan paleoriver flowed continuously until isotope Stage 134 (3.35 Ma). When river discharge ceased, wind transport of pollen grains prevailed over fluvial transport. Pollen indicators of trade winds gradually increased between 3.3 and 2.5 Ma. A strong aridification of the climate of northwestern Africa occurred during isotope Stage 130 (3.26 Ma). Afterwards, humid conditions reestablised followed by another aridification around 2.7 Ma. Repetitive latitudinal shifts of vegetation zones ranging from wooded savanna to desert flora dominated for the first time between between 2.6 and 2.4 Ma as a response to the glacial stages 104, 100 and 98. Although climatic conditions, recorded in the Pliocene, were not as dry as those of the middle and Late Pleistocene, latitudinal vegetation shifts near the end of the Pliocene resembled those of the interglacial-glacial cycles of the Brunhes chron.
    Keywords: 108-658A; 108-658B; Canarias Sea; DRILL; Drilling/drill rig; Joides Resolution; Leg108; Ocean Drilling Program; ODP
    Type: dataset publication series
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-07-22
    Keywords: Acanthaceae; Alnus; Anthoceros; Antidesma-type; Artemisia (Africa); Asphodelus; Atlantic Ocean; Betula; Brassicaceae; Calligonum; Caryophyllaceae; Caryophyllaceae, Chenopodiaceae, Amaranthaceae; Cedrus; Celtis; Centaurea scabiosa-type (Africa); Cistus; Combretaceae/Melastomataceae; Compositae Liguliflorae; Compositae Tubuliflorae; Corylus; Counting, palynology; Cupressaceae; Cyperaceae undifferentiated; Delphinium-type; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Dipsacaceae (Africa); Ephedra distachya-type; Ephedra fragilis-type; Erica (Africa); Euphorbiaceae undifferentiated; Fern spores; Geraniaceae (Africa); GIK16004-1; Gymnocarpos; Gypsophila; Helianthemum; Heliotropium; Isoetes; Juglans; KOL; Labiatae; Liliaceae undifferentiated; M60; Marker, added; Marker, found; Meliaceae; Meteor (1964); Olea; Ophioglossum; Papilionoideae; Phillyrea; Pinus; Pistacia; Piston corer (Kiel type); Plantago; Plantago psyllium-type; Poaceae undifferentiated; Polemonium; Pollen, total; Polycarpon; Quercus; Quercus ilex-type; Quercus pubescens-type; Quercus suber-type; Ranunculaceae; Rhus-type; Rubiaceae undifferentiated; Rumex; Sanguisorba minor; Sanguisorba officinalis-type; Spores, monolete; Spores, trilete; SUBTROPEX 82; Thalictrum; Thymelaeaceae; Tilia; Typha angustifolia-type; Ulmus; Umbelliferae; Volume
    Type: dataset
    Format: text/tab-separated-values, 3431 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-08-15
    Keywords: Abies; Acer; Alnus; Anthoceros; Arbutus; Artemisia (Africa); Asphodelus; Atlantische Kuppenfahrten 1967/1-3; Betula; Boraginaceae (Africa); Brassicaceae; Caryophyllaceae; Caryophyllaceae, Chenopodiaceae, Amaranthaceae; Cedrus; Celtis; Centaurea perrottettii-type; Cistus; Compositae Liguliflorae; Compositae Tubuliflorae; Corylus; Cotinus-type; Counting, palynology; Cupressaceae; Cyperaceae undifferentiated; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Ephedra distachya-type; Ephedra fragilis-type; Erica (Africa); Erodium; Fagus; Fern spores; Filipendula; Fraxinus; Helianthemum; Hippophae; Isoetes; KAL; Kasten corer; Labiatae; Liliaceae undifferentiated; Linaceae; Lysimachia-type (Africa); M8; M8_057-2; M8057B; Malvaceae (Africa); Marker, added; Marker, found; Mercurialis (Africa); Meteor (1964); Myrtus; North Atlantic Ocean; Olea; Ophioglossum; Papilionoideae; Phillyrea; Pinus; Pistacia; Plantago; Poaceae undifferentiated; Pollen, total; Quercus; Quercus ilex-type; Quercus pubescens-type; Quercus suber-type; Ranunculaceae; Rhamnaceae undifferentiated; Rhus-type; Rosaceae (Africa); Rubiaceae undifferentiated; Rumex; Salix cf. Salix chevalieri; Spores, monolete; Spores, trilete; Taxus; Thalictrum; Tilia; Ulmus; Umbelliferae; Volume
    Type: dataset
    Format: text/tab-separated-values, 2016 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Dupont, Lydie M; Agwu, Chiori O C (1991): Environmental control of pollen grain distribution patterns in the Gulf of Guinea and offshore NW-Africa. Geologische Rundschau, 80(3), 567-589, https://doi.org/10.1007/BF01803687
    Publication Date: 2024-08-08
    Description: The areas of marine pollen deposition are related to the pollen source areas by aeolian and fluvial transport regimes, whereas wind transport is much more important than river transport. Pollen distribution patterns of Pinus, Artemisia, Chenopodiaceae-Amaranthaceae, and Asteraceae Tubuliflorae trace atmospheric transport by the northeast trades. Pollen transport by the African Easterly Jet is reflected in the pollen distribution patterns of Chenopodiaceae-Amaranthaceae, Asteraceae Tubuliflorae, and Mitracarpus. Grass pollen distribution registers the latitudinal extension of Sahel, savannas and dry open forests. Marine pollen distribution patterns of Combretaceae-Melastomataceae, Alchornea, and Elaeis reflect the extension of wooded grasslands and transitional forests. Pollen from the Guinean-Congolian/Zambezian forest and from the Sudanian/Guinean vegetation zones mark the northernmost extension of the tropical rain forest. Rhizophora pollen in marine sediments traces the distribution of mangrove swamps. Only near the continent, pollen of Rhizophora, Mitracarpus, Chenopodiaceae-Amaranthaceae, and pollen from the Sudanian and Guinean vegetation zones are transported by the Upwelling Under Current and the Equatorial Under Current, where those currents act as bottom currents. The distribution of pollen in marine sediments, reflecting the position of major climatic zones (desert, dry tropics, humid tropics), can be used in tracing climatic changes in the past.
    Keywords: 381; 386; Acacia/Parkia; Acanthaceae; Adenia; Adenium; Aeschynemone; Afrormosia; Afzelia; Aizoaceae; Albizzia; Alchornea; Allanblackia; Alnus; Aneilema; Anemone; Anthocleista; Antidesma-type; Apocynaceae; Arecaceae; Artemisia (Africa); Atlantic Ocean; Avicennia; Balanites; Baphia-type; Barleria; Betula; Blepharis; Blighia-type; Boerhavia; Bombax; Borassus-type; Borreria; Boscia-type; Bosqueia; Bouchea; Brachystegia; Brassicaceae; Bridelia; Burseraceae; Butyrospermum; Cadaba; Caesalpinioideae; Calligonum; Calycobolus-type; Campylostemon; Canarium; Canavalia; Canthium; Cardiospermum; Caryophyllaceae, Chenopodiaceae, Amaranthaceae; Cassia-type; Caylusea; Celastraceae/Hippocrateaceae; Celtis; Chlorophora; Cissus; Clausena; Cleome; Cnestis-type; Coccinia; Combretaceae/Melastomataceae; Commiphora; Compositae Liguliflorae; Compositae Tubuliflorae; Conocarpus; Cordia; Corylus; Counting, palynology; Crossopteryx; Croton-type; Cucurbitaceae; Cuviera; Cyperaceae undifferentiated; Daniellia-type; Delonix; DEPTH, sediment/rock; Dialium-type; Dichrostachys cinerea; Dioscorea; Diospyros; Dodonaea viscosa; Dolichos; Dorstenia africana-type; Dracaena; Drosera (Africa); Duparquetia; eastern Romanche Fracture Zone; Echium (Africa); Elaeis guineensis; Elevation of event; Entada-type; Ephedra; Erica (Africa); Euphorbiaceae undifferentiated; Euphorbia-type; Event label; Fagonia; Fagus; Fern spores; Flacourtiaceae; Fungal spore indeterminata; Funtumia; Gaertnera; Garcinia; Gardenia; GEOTROPEX 83, NOAMP I; Giant box corer; GIK16430-2; GIK16435-1; GIK16769-1; GIK16770-1; GIK16771-1; GIK16772-1; GIK16773-2; GIK16774-3; GIK16775-2; GIK16776-2; GIK16777-1; GIK16778-2; GIK16779-1; GIK16780-1; GIK16781-1; GIK16782-2; GIK16783-1; GIK16784-3; GIK16785-1; GIK16786-1; GIK16787-1; GIK16788-1; GIK16789-1; GIK16790-1; GIK16791-2; GIK16792-3; GIK16793-1; GIK16794-1; GIK16795-1; GIK16796-1; GIK16797-2; GIK16798-1; GIK16799-1; GIK16800-1; GIK16801-1; GIK16802-1; GIK16803-1; GIK16804-1; GIK16805-1; GIK16806-1; GIK16807-1; GIK16808-2; GIK16809-2; GIK16811-2; GIK16812-2; GIK16813-1; GIK16815-2; GIK16816-1; GIK16817-1; GIK16818-1; GIK16819-2; GIK16820-1; GIK16821-1; GIK16823-2; GIK16824-5; GIK16825-1; GIK16826-4; GIK16827-1; GIK16828-1; GIK16829-2; GIK16830-1; GIK16831-1; GIK16832-1; GIK16833-2; GIK16835-1; GIK16836-1; GIK16837-1; GIK16838-1; GIK16839-1; GIK16840-1; GIK16842-1; GIK16843-1; GIK16844-1; GIK16845-1; GIK16846-1; GIK16847-1; GIK16848-1; GIK16849-2; GIK16850-1; GIK16851-1; GIK16852-1; GIK16854-1; GIK16855-1; GIK16856-1; GIK16857-1; GIK16858-1; GIK16860-1; GIK16861-1; GIK16862-1; GIK16863-2; GIK16864-1; GIK16866-1; GIK16867-1; GIK16868-1; GIK16870-1; GIK16871-1; GIK16872-1; GIK16873-1; GIK16874-2; GIK16875-1; GIK16876-1; GIK16877-1; GIK16878-2; GIK16879-1; GIK16880-1; GKG; Gravity corer (Kiel type); Gymnocarpos; Haloragaceae; Heliotropium; Hildebrandtia; Holoptelea grandis; Hygrophila-type; Hymenocardia; Hyphaene; Hypoestes type; Ilex cf.. mitis; Indeterminata/varia; Indigofera-type; Iodes; Irvingia; Isoberlinia-type; Ixora; Jasminum; Jatropha; Juglans; Juniperus (Africa); Jussiaea; Justicia/Monechma; Kedrostis; Khaya; Labiatae; Langucularia; Lannea; Latitude of event; Leea; Leonotis; Lepisanthus; Leptaulus; Liliaceae undifferentiated; Longitude of event; Lophira; Ludwigia; Lycopodium (Africa); M6/5; M65; Macaranga-type; Maerua-type; Malvaceae (Africa); Manilkara; Martretia; Melia; Melochia; Mendoncia; Merremia; Meteor (1964); Meteor (1986); Mimosoideae; Mimusops; Mitracarpus; Mitragyna; Mitriostigma/Oxyanthus; Morelia senegalensis; Morus-type; Myrica; Myrtaceae (Africa); Nauclea/Mitragyna; NE Atlantic off Liberia; Nitraria; Nypa; Ochna; Ochnaceae; off Cote d Ivoire; off eastern Ghana; off Gabun; off Ghana; off Guinea; off Lagos; off Liberia; off Nigeria; off Nigeria-Delta; Olacaceae; Olea; Oleaceae (Africa); Papilionoideae; Parinari; Pentaclethra; Periploca; Phillyrea; Phyllanthus; Picea; Piliostigma; Pinus; Plantago; Poaceae undifferentiated; Podocarpus; Pollen, total; Polycarpon; Polygala-type; Polygonum aviculare-type; Portulaca; Prosopis; Protea; Pteris; Pterocarpus; Pterolobium; Pycnanthus; Quercus; Rhamnaceae undifferentiated; Rhaphiostylis; Rhizophora; Rhus-type; Rhynchosia-type; Rosaceae (Africa); Rubiaceae undifferentiated; Ruellia; Rutaceae; Rytigynia; Salvadora persica; Sapindaceae; Sapium-type; Sapotaceae/Meliaceae; Schrebera; Sesbania-type; Sherbournea; Sierra Leone Basin/Guinea Basin; Simirestis; SL; Solanum-type; Spathodea; Spondias; Spores, monolete; Spores, monolete psilate; Spores, monolete verrucate; Spores, trilete psilate; Spores, trilete verrucate; Sterculiaceae; Sterculia-type; Strophanthus-type; Strychnos; Symphonia globulifera; Tabernaemontana; Tamarindus/Cryptosepalum; Tamarix (Africa); Tapinanthus; Tarenna; Tephrosia; Tetrorchidium; Tiliaceae; Trichilia; Trichodesma; Turraea; Typha angustifolia-type; Uapaca; Ulmus; Urticaceae; Utricularia (Africa); van Veen Grab; VGRAB; Vigna; Virectaria; Vitaceae (Africa); Zanthoxylum
    Type: dataset
    Format: text/tab-separated-values, 24570 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-08-08
    Keywords: Acanthus; Acer; Alnus; Antidesma-type; Arbutus; Artemisia (Africa); Asphodelus; Balanites; Betula; Boraginaceae (Africa); Borago; Brassicaceae; Cadaba; Calligonum; Carpinus; Caryophyllaceae, Chenopodiaceae, Amaranthaceae; Caylusea; Cedrus; Celosia; Celtis; Centaurea perrottettii-type; Cistus; Clematis-type; Cleome; Compositae Liguliflorae; Compositae Tubuliflorae; Corylus; Counting, palynology; Crotalaria; Cucurbitaceae; Cyperaceae undifferentiated; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Echinops (Africa); Echiochilon; Echium (Africa); Encephalartos; Ephedra distachya-type; Ephedra fragilis-type; Ericaceae undifferentiated; Erodium; Euphorbiaceae undifferentiated; Euphorbia-type; Fagus; Fern spores; Galium (Africa); Geraniaceae (Africa); GIK15627-3; Gisekia; Gymnocarpos; Gypsophila; Haloragaceae; Helianthemum; Heliotropium; Hyphaene; Indeterminata/varia; Isoetes; Juglans; Juniperus (Africa); KOL; Labiatae; Lannea; Liliaceae undifferentiated; Linaceae; Linum (Africa); Lonicera (Africa); Lythraceae; M53; Maerua-type; Mallotus; Marker, added; Marker, found; Mercurialis (Africa); Meteor (1964); Mollugo; Moltkia; Myrtus; Northeast Atlantic; Nymphaea; Olea; Onagraceae (Africa); Ophioglossum; Ostrya; Papilionoideae; Phaseolus; Phillyrea; Phyllanthus; Pinus; Pistacia; Piston corer (Kiel type); Plantago; Plumbaginaceae undifferentiated; Poaceae undifferentiated; Pollen, total; Polycarpaea-type; Polycarpon; Polygala-type; Polygonum aviculare-type; Protea; Quercus ilex-type; Quercus pubescens-type; Ranunculaceae; Resedaceae; Rhamnaceae undifferentiated; Rhus-type; Rosaceae (Africa); Rumex; Salix cf. Salix chevalieri; Sanguisorba minor; Solanum-type; Spores, monolete verrucate; Tamarix (Africa); Tilia; Tribulus; Trichodesma; Typha angustifolia-type; Ulmus; Umbelliferae; Veronica-type; Vitaceae (Africa); Volume; Warionia
    Type: dataset
    Format: text/tab-separated-values, 7602 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-08-08
    Keywords: Acacia/Parkia; Acanthaceae; Acer; Alnus; Ambrosia-type; Anthoceros; Antidesma-type; Artemisia (Africa); Asphodelus; Betula; Boscia-type; Brassicaceae; Bridelia; Butyrospermum; Canthium; Capparis; Carpinus; Caryophyllaceae; Caryophyllaceae, Chenopodiaceae, Amaranthaceae; Cassia-type; Cedrus; Celtis; Centaurea perrottettii-type; Centaurea scabiosa-type (Africa); Ceratonia; Cleome; Combretaceae/Melastomataceae; Commiphora; Compositae Liguliflorae; Compositae Tubuliflorae; Corylus; Counting, palynology; Cyperaceae undifferentiated; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Ephedra distachya-type; Ephedra fragilis-type; Epilobium; Ericaceae undifferentiated; Erodium; Euphorbia-type; Fagus; Fern spores; GIK15669-1; Gravity corer (Kiel type); Gymnosporia; Gypsophila; Helianthemum; Indeterminata/varia; Isoetes; Juglans; Juniperus (Africa); Ligustrum; M53; M53_169; Marker, added; Marker, found; Meteor (1964); Myrica; Myrtaceae (Africa); off West Africa; Olea; Papilionoideae; Paronychia; Phillyrea; Phyllanthus; Picconia; Picea; Pilea; Pinus; Pistacia; Pityrogramma; Plantago; Poaceae undifferentiated; Pollen, total; Polycarpaea-type; Polygonum aviculare-type; Portulacaceae; Quercus ilex-type; Quercus pubescens-type; Ranunculaceae; Rhamnaceae undifferentiated; Rhus-type; Rosaceae (Africa); Rumex; Salix cf. Salix chevalieri; Salvadora persica; Schizaea-type; SL; Spores, monolete psilate; Spores, monolete verrucate; Spores, trilete psilate; Spores, trilete verrucate; Thymelaeaceae; Tilia; Tribulus; Ulmus; Umbelliferae; Viburnum (Africa); Vigna; Volume; Zygophyllum
    Type: dataset
    Format: text/tab-separated-values, 4136 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...