GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4)
  • 1990-1994  (3)
  • 1985-1989  (1)
  • 1
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Erosional features on the floor of Eastern Valley of the Laurentian Fan, in 2800 m water depth, have been mapped with SeaMARC I side-scan sonar images and Seabeam multi-beam echo-soundings, and were directly observed during a dive with the deep submersible Alvin. The most spectacular feature is a 100-m-deep flute-shaped scour, more than 1 km long. The surrounding valley is floored by an unconsolidated coarse conglomerate, which was moulded into transverse bedforms by the turbidity current that was triggered by the 1929 Grand Banks earthquake. Direct observations and seismic-reflection profiles show that the flute-shaped scour cuts through this conglomerate and into Plio-Pleistocene valley-floor sediments, thereby exposing a section through the 1929 deposit. Application of the Allen defect theory suggests that the flute is unusually deep because general channel-floor erosion was inhibited by the conglomerate veneer.Valley-floor channels typically 1 km wide and 10m deep contain series of closed depressions that occasionally deepen to 30 m. These are also interpreted as erosional scours, analogous to pools cut on the beds of bedrock rivers. The large flute was probably formed by detached flow enlarging an initial scour depression. Such scours probably play an important role in channel-floor erosion, increasing the volume of sediment transported by large turbidity currents.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: New observations concerning the degree of current-induced erosion and deposition in the path of the 1929 Grand Banks turbidity current are presented. Most of the observations are available from Eastern Valley, Laurentian Fan. Seabeam and SeaMARC I data reveal widespread current erosion along the valley over a distance of 200 km from the shelfbreak. Erosional valley-floor channels are preferentially developed adjacent to the valley margins and the flanks of intravalley highs. Asymmetric transverse bedforms (herein termed gravel waves) are moulded in a deflationary pebble and cobble lag that overlies the eroded valley floor. In contrast, at the distal limit of Eastern Valley, thick deposits of massive granule gravel indicate deposition beneath a decelerating turbidity current. Symmetrical transverse bedforms (herein termed macrodunes) are developed within these granule gravel sediments.The spatial distribution of both bedforms and the areas of erosive excavation suggest that the turbidity current in 1929 was accelerating over the first 100 km from the shelfbreak and was eroding and entraining sediment from the valley floor over a distance of at least 200 km. With the loss of lateral constraint at the distal limit of Eastern Valley the turbidity current spread laterally and started depositing sediment as it decelerated. Current-induced erosion of the valley floor represented a potential source of between 50 and 100 km3 of sediment for incorporation into the resulting turbidite.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-0581
    Keywords: Mid-Atlantic Ridge ; seafloor spreading ; rift valley ; oceanic crust
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract High-resolution Sea Beam bathymetry and Sea MARC I side scan sonar data have been obtained in the MARK area, a 100-km-long portion of the Mid-Atlantic Ridge rift valley south of the Kane Fracture Zone. These data reveal a surprisingly complex rift valley structure that is composed of two distinct spreading cells which overlap to create a small, zero-offset transform or discordant zone. The northern spreading cell consists of a magmatically robust, active ridge segment 40–50 km in length that extends from the eastern Kane ridge-transform intersection south to about 23°12′ N. The rift valley in this area is dominated by a large constructional volcanic ridge that creates 200–500 m of relief and is associated with high-temperature hydrothermal activity. The southern spreading cell is characterized by a NNE-trending band of small (50–200 m high), conical volcanos that are built upon relatively old, fissured and sediment-covered lavas, and which in some cases are themselves fissured and faulted. This cell appears to be in a predominantly extensional phase with only small, isolated eruptions. These two spreading cells overlap in an anomalous zone between 23°05′ N and 23°17′ N that lacks a well-developed rift valley or neovolcanic zone, and may represent a slow-spreading ridge analogue to the overlapping spreading centers found at the East Pacific Rise. Despite the complexity of the MARK area, volcanic and tectonic activity appears to be confined to the 10–17 km wide rift valley floor. Block faulting along near-vertical, small-offset normal faults, accompanied by minor amounts of back-tilting (generally less than 5°), begins within a few km of the ridge axis and is largely completed by the time the crust is transported up into the rift valley walls. Features that appear to be constructional volcanic ridges formed in the median valley are preserved largely intact in the rift mountains. Mass-wasting and gullying of scarp faces, and sedimentation which buries low-relief seafloor features, are the major geological processes occurring outside of the rift valley. The morphological and structural heterogeneity within the MARK rift valley and in the flanking rift mountains documented in this study are largely the product of two spreading cells that evolve independently to the interplay between extensional tectonism and episodic variations in magma production rates.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 352 (1991), S. 148-150 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The record of calcium carbonate content in pelagic sediments is an extremely valuable stratigraphic and palaeoenvironmental tool. This is particularly true for the equatorial Pacific where down-section variations in carbonate content have been related to bio- and magneto-stratigraphies1. ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...