GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    New York, NY :Springer,
    Keywords: Ecosystem management. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (478 pages)
    Edition: 1st ed.
    ISBN: 9781461219088
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-1464
    Keywords: ammonium ; freshwater tidal marsh ; invasive species ; phosphate ; Phragmites ; porewater ; restoration ; Typha
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Selected nitrogen and phosphorus pools in two freshwater tidal marsh ecosystems on the lower Connecticut River were measured relative to Phragmites, Typha and mixed native wetland plant cover types. For both the Chapman Pond Preserve and Chester Creek Marsh, significant differences were found between plant cover types in porewater ammonium and phosphate for some months during the 1998 growing season; porewater nitrate was always below the detection limit. At Chapman Pond, no significant differences were detected between Phragmites and Typha for plant tissue N concentrations. The standing stock of nitrogen was higher in Phragmites stands, however, owing to its greater aboveground biomass. No significant difference was found between plant cover types for total soil N at Chapman Pond, but KCl extractable ammonium was higher in the mixed cover type than Phragmites or Typha. The results of this study suggest that Phragmites is affecting nutrient pools in freshwater tidal marshes, a result that should be considered in future management design.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 168-169 (1995), S. 113-123 
    ISSN: 1573-5036
    Keywords: aluminum ; coarse wood ; belowground gaps ; nutrients ; tropical and temperate forests ; roots ; soil horizons
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Ecosystem sustainability and resilience after a disturbance may be regulated by processes occurring at smaller spatial scales. The matrix of different spatial environments are created by (1) individual plants that accumulate higher concentrations of specific nutrients, trace elements or defensive plant secondary chemicals and thereby modify the chemistry of their ecological space and/or rates of processes, (2) the presence of structures (e.g., coarse woody debris) that may buffer some micro-environments from disturbances by functioning as a hospitable environment or as a reservoir for mycorrhizal fungi to sustain them into the next phase of stand development, and (3) chemical changes in soils during soil development which may result in distinct soil chemical environments. The response of the plants or change in the sustainability of carbon and nutrient cycles may be expressed more strongly at this smaller ecological space of an individual plant and furthermore must be frequently examined separately by the above- and belowground space of that individual. This paper will present three case studies from temperate and tropical forest ecosystems which suggest the importance of studying plant growth and nutrient and trace element cycling by stratifying sampling to encompass the mosaic patterns of existing spatial variability within the ecosystem. The examples show how individual plant species are able to create ecologically distinct spatial environments because of their distribution patterns within the landscape, how nutrient transfers in roots respond to the chemical variations in the soil, and how roots and mycorrhizal fungi are able to maintain themselves in the mosaic of coarse woody debris remaining on a site after the elimination of aboveground tree biomass.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5036
    Keywords: above- and belowground biomass and production ; above- and belowground litter transfers ; boreal forests ; climatic variables ; cold and warm temperate forests ; forest floor accumulations ; nutrients ; soil organic matter ; subtropical and tropical forests
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Patterns of both above- and belowground biomass and production were evaluated using published information from 200 individual data-sets. Data sets were comprised of the following types of information: organic matter storage in living and dead biomass (e.g. surface organic horizons and soil organic matter accumulations), above- and belowground net primary production (NPP) and biomass, litter transfers, climatic data (i.e. precipitation and temperature), and nutrient storage (N, P, Ca, K) in above- and belowground biomass, soil organic matter and litter transfers. Forests were grouped by climate, foliage life-span, species and soil order. Several climatic and nutrient variables were regressed against fine root biomass or net primary production to determine what variables were most useful in predicting their dynamics. There were no significant or consistent patterns for above- and belowground biomass accumulation or NPP change across the different climatic forest types and by soil order. Similarly, there were no consistent patterns of soil organic matter (SOM) accumulation by climatic forest type but SOM varied significantly by soil order—the chemistry of the soil was more important in determining the amount of organic matter accumulation than climate. Soil orders which were high in aluminum, iron, and clay (e.g. Ultisols, Oxisols) had high total living and dead organic matter accumulations-especially in the cold temperate zone and in the tropics. Climatic variables and nutrient storage pools (i.e. in the forest floor) successfully predicted fine root NPP but not fine root biomass which was better predicted by nutrients in litterfall. The importance of grouping information by species based on their adaptive strategies for water and nutrient-use is suggested by the data. Some species groups did not appear to be sensitive to large changes in either climatic or nutrient variables while for others these variables explained a large proportion of the variation in fine root biomass and/or NPP.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5036
    Keywords: Atlantic white cedar ; calcium ; magnesium ; potassium ; nutrient resorption ; nutrient use efficiency ; wood chemical composition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nutrient resorption from senescing tissues increases plant nutrient-use efficiency, and may be an adaptation to nutrient limitation. In some tree species, retranslocation of nutrients from sapwood during heartwood formation is a comparable process. We measured Ca, Mg and K concentrations in Atlantic white cedar (Chamaecyparis thyoides) stemwood samples taken from two swamps in the northeastern United States and compared them to soil mineral nutrient availability at each site. We found that Ca, Mg and K concentrations were 60–700% higher in sapwood than in the immediately adjacent heartwood, indicating retranslocation of these nutrients from senescing sapwood. Sapwood nutrient concentrations were similar between the two sites. However, nutrient concentrations in the heartwood differed significantly between the sites, as did the relative degree of Ca and Mg retranslocation from senescing sapwood. We found these differences between sites to be inversely related to significant differences in exchangeable Ca, Mg and K as well as Al concentrations in the soil. These findings suggest that the degree of nutrient retranslocation from senescing sapwood may be influenced by soil nutrient availability.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5036
    Keywords: calculations ; carbon flux method ; fine-root biomass methods ; forests ; indirect methods ; ingrowth cores ; minirhizotrons ; net primary production ; nitrogen budget method ; nutrients ; sequential soil coring
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The relationship of global climate change to plant growth and the role of forests as sites of carbon sequestration have encouraged the refinement of the estimates of root biomass and production. However, tremendous controversy exists in the literature as to which is the best method to determine fine root biomass and production. This lack of consensus makes it difficult for researchers to determine which methods are most appropriate for their system. The sequential root coring method was the most commonly used method to collect root biomass data in the past and is still commonly used. But within the last decade the use of minirhizotrons has become a favorite method of many researchers. In addition, due to the high labor-intensive requirements of many of the direct approaches to determine root biomass, there has been a shift to develop indirect methods that would allow fine root biomass and production to be predicted using data on easily monitored variables that are highly correlated to root dynamics. Discussions occur as to which method should be used but without gathering data from the same site using different methods, these discussions can be futile. This paper discusses and compares the results of the most commonly used direct and indirect methods of determining root biomass and production: sequential root coring, ingrowth cores, minirhizotrons, carbon fluxes approach, nitrogen budget approach and correlations with abiotic resources. No consistent relationships were apparent when comparing several sites where at least one of the indirect and direct methods were used on the same site. Until the different root methods can be compared to some independently derived root biomass value obtained from total carbon budgets for systems, one root method cannot be stated to be the best and the method of choice will be determined from researcher's personal preference, experiences, equipment, and/or finances.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...