GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (6)
Document type
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 66 (1996), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The death of dopaminergic and other neurons in primary cultures of the mesencephalon could be induced by treatment with ceramide, as in lymphocytes where it mediates activation by the cytokines tumor necrosis factor-α and interleukin-1β of a novel sphingomyelin-dependent signaling pathway leading to apoptosis. The morphological hallmarks of this form of cell death—bleb formation, cell body shrinkage, nuclear chromatin condensation, and fragmentation—were observed in degenerating neurons. Internucleosomal DNA degradation could also be evidenced by gel electrophoresis. The C2 and C6 analogues as well as native ceramide, administered in a dodecane suspension, had a similar effect, whereas the closely related C2-dihydroceramide, which lacks the 4–5 trans double bond in the sphingosine chain, failed to induce apoptosis. Neuronal death could be delayed by serum factors, dibutyryl cyclic AMP, and the protein synthesis inhibitor cycloheximide.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 67 (1996), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Dibutyryl cyclic AMP (dbcAMP), a permeant analogue of cyclic AMP (cAMP), prevented, for at least 3 weeks, the death of tyrosine hydroxylase (TH)-immunopositive dopaminergic neurons, which occurred spontaneously by apoptosis in mesencephalic cultures. Treatment with the cyclic nucleotide analogue also led to a significant increase in the uptake of [3H]dopamine, attesting that the rescued TH+ neurons were fully functional and differentiated. dbcAMP was most effective when added immediately after plating, but delayed treatment could still arrest the ongoing degenerative process. Trophic/survival effects were long-lasting, declining only progressively after withdrawal of dbcAMP from the culture medium. They were independent of cell density and still detectable in the absence of serum proteins. The effects of dbcAMP were mimicked by depolarizing concentrations of potassium and by agents that increase endogenous production of cAMP, such as forskolin or 3-isobutyl-1-methylxanthine, but not by native cAMP, which cannot cross cell membranes. Elimination of glial cells by arabinoside-C did not reduce the activity of dbcAMP. GABAergic neurons, also present in these cultures, were much less dependent on the cyclic nucleotide analogue for their survival, and serotoninergic cells were not dependent at all. Therefore, cAMP-dependent signaling may be particularly crucial for the maturation and long-term survival of mesencephalic dopaminergic neurons.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 72 (1999), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The purinergic nucleoside adenosine effectively prevented the death of dopaminergic neurons that occurs spontaneously and progressively in cultures of rat mesencephalon. Adenosine also significantly increased dopamine uptake, attesting to the state of differentiation and functional integrity of the neurons that were rescued. The effects of adenosine were (a) specific to the dopaminergic neurons in these cultures, (b) long-lived, (c) still observed when the treatment was delayed after plating, (d) potentiated by inhibition of adenosine deaminase, and (e) abolished when this enzyme was added in excess to the culture medium. The action of adenosine was mimicked by 5′-(N-ethylcarboxamido)adenosine and dibutyryl-cyclic AMP, but not by CGS-21680, suggesting the possible involvement of A2B subtype purinergic receptors. ATP was also neuroprotective, but its action resulted principally from conversion to adenosine by ectonucleotidases. Several anticancer drugs, including cytosine arabinoside, have been shown previously to prevent apoptosis in cultured dopaminergic neurons by a mechanism that requires the inhibition of proliferating astrocytes. In the presence of adenosine, astrocytes were more differentiated, and their proliferation rate was significantly reduced, suggesting that the neurotrophic effect of the adenine nucleoside resulted also from the repression of the astroglial cells. We did not find evidence of a trophic intermediary in adenosine-treated cultures, however, leading to the hypothesis that limitation of astrocyte replication in itself and/or ensuing changes in the glial phenotype were crucial. Our results suggest that molecules that modulate adenine nucleotide/nucleoside release may be useful for the treatment of chronic neurodegenerative conditions affecting dopaminergic neurons, such as Parkinson's disease.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 69 (1997), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Nanomolar concentrations of cytosine arabinoside (ara-C), a structural analogue of 2′-deoxycytidine (2′dC) used in the chemotherapy of cancer, proved to be highly effective in preventing the death of postmitotic dopaminergic neurons that occurs spontaneously by apoptosis in mesencephalic cultures. The rescued cells were totally functional and highly differentiated. The trophic/neuroprotective effects of ara-C were (1) specific for dopaminergic neurons; (2) long-lived, remaining detectable several days after withdrawal of the nucleoside analogue from the culture medium; (3) still observed when the treatment was delayed after plating; (4) abolished by an excess of 2′dC or dCTP, or by exposure to the neurotoxin 1-methyl-4-phenylpyridinium; and (5) mimicked by ara-CTP, 5-fluoro-2′-deoxyuridine, and aphidicolin. Autoradiographic studies revealed that ara-C was incorporated exclusively into astrocyte nuclei, suggesting that the dopaminotrophic activity was indirect and resulted from the antiproliferative action of the modified nucleoside on glial cells at concentrations that were not neurotoxic. No evidence was found for putative deleterious or trophic molecules secreted by proliferating or ara-C-treated astrocytes, respectively, suggesting that neuroglial contact may play a role. Our results suggest a possible mechanism underlying neurodegeneration in Parkinson's disease, where selective loss of dopaminergic neurons in the mesencephalon is accompanied by astrogliosis.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Activation of the apoptogenic sphingomyelin-dependent signaling pathway in neuronally differentiated PC12 cells with cell-permeant C2-ceramide resulted in a transient and short-lived emission of reactive oxygen species that was maximal 6 h after the beginning of treatment, followed immediately by nuclear translocation of the transcription factor nuclear factor κB. The production of reactive oxygen species was necessary for cell death to occur. The origin of the reactive oxygen species was identified as complex I of the mitochondrial electron transport chain. The mitochondria were not dysfunctional, however. They maintained normal membrane potentials and ATP synthesis until the cells began to die and the cell nuclei to condense and to fragment, ∼12 h after the beginning of treatment. We conclude that a mitochondrial free radical signal plays a role in the sphingomyelin-dependent transduction pathway. Convergent data from postmortem brain suggest that this signaling pathway may be activated in the dopaminergic neurons that die in patients with Parkinson's disease and would provide a mechanism for oxidative stress implicating the mitochondria, both of which have long been hypothesized to play a role in the pathogenesis of this disease.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Chronic dibutyryl cAMP (dbcAMP) treatment was observed not only to potentiate the differentiating actions of nerve growth factor (NGF) in PC12 cells, but to render them completely dependent on trophic support for survival even in the presence of serum proteins. When both NGF and dbcAMP were withdrawn from doubly differentiated PC12 cultures, degenerative events occurred after a lag period of 12–18 h, and by 48 h ≤ 5–10% of the cells remained viable. Reduction in [3H]dopamine uptake, an index of cell function and neurite integrity, paralleled cell demise. At the cellular level, ∼20–30% of the nuclei exhibited clear signs of chromatin fragmentation, as characterized by propidium iodide staining, suggesting that degeneration occurred by apoptosis. The cells could be rescued completely from degeneration by dbcAMP or by other cAMP analogues, whereas NGF and depolarization were also effective, but only partially. Phorbol 12-myristate-13-acetate failed to afford protection. If deprivation was interrupted, cell demise could be stopped by restoration of initial culture conditions. Degenerative changes produced by deprivation and recovery processes were not inhibited by macromolecular synthesis inhibitors, e.g. cycloheximide and actinomycin-D. However, chronic addition of cycloheximide prior to deprivation greatly impaired the differentiation of NGF/dbcAMP cells, allowing these cells to withstand trophic support withdrawal. Altogether our results indicate that the cAMP transduction pathway plays a crucial role not only in the differentiation but also in the survival of NGF/dbcAMP PC12 cells.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...