GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Geology, Geological Society of America, Vol. 27, No. 10 ( 1999), p. 887-
    Type of Medium: Online Resource
    ISSN: 0091-7613
    Language: English
    Publisher: Geological Society of America
    Publication Date: 1999
    detail.hit.zdb_id: 184929-3
    detail.hit.zdb_id: 2041152-2
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1997
    In:  Journal of Geophysical Research: Solid Earth Vol. 102, No. B12 ( 1997-12-10), p. 27603-27621
    In: Journal of Geophysical Research: Solid Earth, American Geophysical Union (AGU), Vol. 102, No. B12 ( 1997-12-10), p. 27603-27621
    Abstract: In recent years the Transantarctic Mountains (TAM), the largest noncontractional mountain belt in the world, have become the focus of modelers who explained their uplift by a variety of isostatic and thermal mechanisms. A problem with these models is a lack of available data to compare with model predictions. We report here the results of a 312‐km‐long geophysical traverse conducted in 1993/1994 in the hinterland of the TAM. Using detailed subglacial topography and gravity measurements, we confirm the origin of the TAM as a flexural uplift of the edge of East Antarctica. Using an elastic model with a free edge, we can jointly fit the topography and the gravity with a plate having an elastic thickness of 85±15 km and a preuplift elevation of 700±50 m for East Antarctica. Using a variety of evidence, we argue that the uplift is coincident with a relatively minor tectonic event of transtensional motion between East and West Antarctica during the Eocene rather than the Late Cretaceous rifting event that created the Ross Embayment. We suggest that this transtensional motion caused the continuous plate to break, which created an escarpment that significantly increased the rates of erosion and exhumation. Results from the geophysical traverse also extend our knowledge of the bedrock geology from the exposures within the TAM to the ice covered interior. Our interpretation suggests that the Ferrar flood basalts extend at least 100 km westward under the ice. The Beacon Supergroup of Paleozoic and Mesozoic sediments thins gradually under the ice and its reconstructed thickness is reminiscent of profiles of foreland basins. Finally, there is no indication in the gravity field for an incomplete rebound due to significant melting of the East Antarctic ice sheet since the last glacial period.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1997
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1998
    In:  Eos, Transactions American Geophysical Union Vol. 79, No. 28 ( 1998-07-14), p. 336-337
    In: Eos, Transactions American Geophysical Union, American Geophysical Union (AGU), Vol. 79, No. 28 ( 1998-07-14), p. 336-337
    Abstract: A joint Spanish‐American geophysical cruise north of the Virgin Islands has delineated the fracture pattern of the North American plate as it is overrun by the northeast corner of the Caribbean plate. Previously known fractures parallel to the plate boundary (approximately east‐west) probably result from plate flexure, while newly defined crossing fractures (north‐northeast) may be related to extension produced by the compound bend of the North American plate. The direction of the fractures may be modified by preexisting spreading tectonic fabric. The fieldwork took place in May 1997 aboard the Spanish research vessel Hespérides as part of an ongoing effort to study plate interactions and their seismotectonic effects on Puerto Rico and the Virgin Islands. Multichannel seismic‐reflection profiles, multibeam bathymetry, and gravity and magnetic data were collected on the cruise. Also examined were reprocessed regional seismic lines, newly relocated earthquake epicenters, and satellite gravity data. The program was planned by scientists from the U.S. Geological Survey (USGS), Instituto Español de Oceanografía (IEO), and the Woods Hole Oceanographic Institution.
    Type of Medium: Online Resource
    ISSN: 0096-3941 , 2324-9250
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1998
    detail.hit.zdb_id: 24845-9
    detail.hit.zdb_id: 2118760-5
    detail.hit.zdb_id: 240154-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Geological Society of America ; 1995
    In:  Geology Vol. 23, No. 7 ( 1995), p. 580-
    In: Geology, Geological Society of America, Vol. 23, No. 7 ( 1995), p. 580-
    Type of Medium: Online Resource
    ISSN: 0091-7613
    Language: English
    Publisher: Geological Society of America
    Publication Date: 1995
    detail.hit.zdb_id: 184929-3
    detail.hit.zdb_id: 2041152-2
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Tectonophysics, Elsevier BV, Vol. 293, No. 1-2 ( 1998-7), p. 69-84
    Type of Medium: Online Resource
    ISSN: 0040-1951
    Language: English
    Publisher: Elsevier BV
    Publication Date: 1998
    detail.hit.zdb_id: 2012830-7
    detail.hit.zdb_id: 204243-5
    SSG: 16,13
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1996
    In:  Journal of Geophysical Research: Solid Earth Vol. 101, No. B7 ( 1996-07-10), p. 16205-16220
    In: Journal of Geophysical Research: Solid Earth, American Geophysical Union (AGU), Vol. 101, No. B7 ( 1996-07-10), p. 16205-16220
    Abstract: We use three‐dimensional elastic models to help guide the kinematic interpretation of crustal deformation associated with strike‐slip faults. Deformation of the brittle upper crust in the vicinity of strike‐slip fault systems is modeled with the assumption that upper crustal deformation is driven by the relative plate motion in the upper mantle. The driving motion is represented by displacement that is specified on the bottom of a 15‐km‐thick elastic upper crust everywhere except in a zone of finite width in the vicinity of the faults, which we term the “shear zone.” Stress‐free basal boundary conditions are specified within the shear zone. The basal driving displacement is either pure strike slip or strike slip with a small oblique component, and the geometry of the fault system includes a single fault, several parallel faults, and overlapping en echelon faults. We examine the variations in deformation due to changes in the width of the shear zone and due to changes in the shear strength of the faults. In models with weak faults the width of the shear zone has a considerable effect on the surficial extent and amplitude of the vertical and horizontal deformation and on the amount of rotation around horizontal and vertical axes. Strong fault models have more localized deformation at the tip of the faults, and the deformation is partly distributed outside the fault zone. The dimensions of large basins along strike‐slip faults, such as the Rukwa and Dead Sea basins, and the absence of uplift around pull‐apart basins fit models with weak faults better than models with strong faults. Our models also suggest that the length‐to‐width ratio of pull‐apart basins depends on the width of the shear zone and the shear strength of the faults and is not constant as previously suggested. We show that pure strike‐slip motion can produce tectonic features, such as elongate half grabens along a single fault, rotated blocks at the ends of parallel faults, or extension perpendicular to overlapping en echelon faults, which can be misinterpreted to indicate a regional component of extension. Zones of subsidence or uplift can become wider than expected for transform plate boundaries when a minor component of oblique motion is added to a system of parallel strike‐slip faults.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1996
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1996
    In:  Journal of Geophysical Research: Solid Earth Vol. 101, No. B1 ( 1996-01-10), p. 533-544
    In: Journal of Geophysical Research: Solid Earth, American Geophysical Union (AGU), Vol. 101, No. B1 ( 1996-01-10), p. 533-544
    Abstract: The Sea of Galilee (Lake Kinneret) is located at the northern portion of the Kinneret‐Bet Shean basin, in the northern Dead Sea transform. Three hundred kilometers of continuous marine gravity data were collected in the lake and integrated with land gravity data to a distance of more than 20 km around the lake. Analyses of the gravity data resulted in a free‐air anomaly map, a variable density Bouguer anomaly map, and a horizontal first derivative map of the Bouguer anomaly. These maps, together with gravity models of profiles across the lake and the area south of it, were used to infer the geometry of the basins in this region and the main faults of the transform system. The Sea of Galilee can be divided into two units. The southern half is a pull‐apart that extends to the Kinarot Valley, south of the lake, whereas the northern half was formed by rotational opening and transverse normal faults. The deepest part of the basinal area is located well south of the deepest bathymetric depression. This implies that the northeastern part of the lake, where the bathymetry is the deepest, is a young feature that is actively subsiding now. The pull‐apart basin is almost symmetrical in the southern part of the lake and in the Kinarot Valley south of the lake. This suggests that the basin here is bounded by strike‐slip faults on both sides. The eastern boundary fault extends to the northern part of the lake, while the western fault does not cross the northern part. The main factor controlling the structural complexity of this area is the interaction of the Dead Sea transform with a subperpendicular fault system and rotated blocks.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1996
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1999
    In:  Journal of Geophysical Research: Solid Earth Vol. 104, No. B8 ( 1999-08-10), p. 18015-18039
    In: Journal of Geophysical Research: Solid Earth, American Geophysical Union (AGU), Vol. 104, No. B8 ( 1999-08-10), p. 18015-18039
    Abstract: Eocene mafic crust with high seismic velocities underlies much of the Oregon and Washington forearc and acts as a backstop for accretion of marine sedimentary rocks from the obliquely subducting Juan de Fuca slab. Arc‐parallel migration of relatively strong blocks of this terrane, known as Siletzia, focuses upper crustal deformation along block boundaries, which are potential sources of earthquakes. In a three‐dimensional velocity model of coastal Washington, we have combined surface geology, well data, and travel times from earthquakes and controlled source seismic experiments to resolve the major boundaries of the Siletz terrane with the adjacent accreted sedimentary prism and volcanic arc. In southern Washington and northern Oregon the Siletz terrane appears to be a thick block (∼20 km) that extends west of the coastline and makes a high‐angle contact with the offshore accreted sedimentary prism. On its east flank the high‐velocity Siletz terrane boundary coincides with an en echelon zone of seismicity in the arc. In northern Washington the western edge of Siletzia makes a lower‐angled, fault‐bound contact with the accretionary prism. In addition, alternating, east‐west trending uplifts and downwarps of the Siletz terrane centered on the antiformal Olympic Mountains may reflect focusing of north‐south compression in the northern part of the Siletz terrane. This compressional strain may result from northward transport and clockwise rotation of the Siletz terrane into the relatively fixed Canadian Coast Mountains restraining bend along the coast.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1999
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Geology, Geological Society of America, Vol. 26, No. 3 ( 1998), p. 199-
    Type of Medium: Online Resource
    ISSN: 0091-7613
    Language: English
    Publisher: Geological Society of America
    Publication Date: 1998
    detail.hit.zdb_id: 184929-3
    detail.hit.zdb_id: 2041152-2
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Eos, Transactions American Geophysical Union, American Geophysical Union (AGU), Vol. 77, No. 18 ( 1996-04-30), p. 173-176
    Abstract: The Whittier Narrows earthquake of 1987 and the Northridge earthquake of 1991 highlighted the earthquake hazards associated with buried faults in the Los Angeles region. A more thorough knowledge of the subsurface structure of southern California is needed to reveal these and other buried faults and to aid us in understanding how the earthquake‐producing machinery works in this region.
    Type of Medium: Online Resource
    ISSN: 0096-3941 , 2324-9250
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1996
    detail.hit.zdb_id: 24845-9
    detail.hit.zdb_id: 2118760-5
    detail.hit.zdb_id: 240154-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...