GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (1)
Material
Publisher
Language
Years
  • 1995-1999  (1)
Year
  • 1
    In: Neuroimmunomodulation, S. Karger AG, Vol. 6, No. 1-2 ( 1999), p. 56-68
    Abstract: Why a primary lymphoid organ such as the thymus involutes during aging remains a fundamental question in immunology. Aging is associated with a decrease in plasma growth hormone (somatotropin) and IGF-I, and this somatopause of aging suggests a connection between the neuroendocrine and immune systems. Several investigators have demonstrated that treatment with either growth hormone or IGF-I restores architecture of the involuted thymus gland by reversing the loss of immature cortical thymocytes and preventing the decline in thymulin synthesis that occurs in old or GH-deficient animals and humans. The proliferation, differentiation and functions of other components of the immune system, including T and B cells, macrophages and neutrophils, also demonstrate age-associated decrements that can be restored by IGF-I. Knowledge of the mechanism by which cytokines and hormones influence hematopoietic cells is critical to improving the health of aged individuals. Our laboratory has recently demonstrated that IGF-I prevents apoptosis in promyeloid cells, which subsequently permits these cells to differentiate into neutrophils. We also demonstrated that IL-4 acts much like IGF-I to promote survival of promyeloid cells and to activate the enzyme phosphatidylinositol 3′-kinase (PI 3-kinase). However, the receptors for IGF-I and IL-4 are completely different, with the intracellular β chains of the IGF receptor possessing intrinsic tyrosine kinase activity and the α and γc subunit of the heterodimeric IL-4 receptor utilizing the Janus kinase family of nonreceptor protein kinases to tyrosine phosphorylate downstream targets. Both receptors share many of the components of the PI 3-kinase signal transduction pathway, converging at the level of insulin receptor substrate-1 or insulin receptor subtrate-2 (formally known as 4PS, or IL- 〈 b 〉 4 P 〈 /b 〉 hosphorylated 〈 b 〉 S 〈 /b 〉 ubstrate). Our investigations with IGF-I and IL-4 suggest that PI 3-kinase inhibits apoptosis by maintaining high levels of the anti-apoptotic protein Bcl-2. The sharing of common activation molecules, despite vastly different protein structures of their receptors, forms a molecular explanation for the possibility of cross talk between IL-4 and IGF-I in regulating many of the events associated with hematopoietic differentiation, proliferation and survival.
    Type of Medium: Online Resource
    ISSN: 1021-7401 , 1423-0216
    Language: English
    Publisher: S. Karger AG
    Publication Date: 1999
    detail.hit.zdb_id: 1483035-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...