GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1998
    In:  Eos, Transactions American Geophysical Union Vol. 79, No. 1 ( 1998-01-06), p. 1-8
    In: Eos, Transactions American Geophysical Union, American Geophysical Union (AGU), Vol. 79, No. 1 ( 1998-01-06), p. 1-8
    Abstract: A joint research effort is currently focused on the oceanic region south of Africa—the gateway for the exchange of mass, heat, and salt between the Indian and Atlantic Oceans (Figure lb). The name of this collaboration, KAPEX, stands for Cape of Good Hope Experiments, Kap der guten Hoffnung Experimente, or Kaap die Goeie Hoop Eksperimente in the three languages of the participating scientists. This is the first time that scientists are using acoustically tracked floats extensively in ocean regions surrounding southern Africa to measure ocean flow patterns. At the tip of Africa, the Agulhas Current from the Indian Ocean interacts with the South Atlantic Current, contributing to the northwestward flowing Benguela Current, which transports water, heat, and salt to the subtropical and subequatorial South Atlantic (Figure la). This transport increases the heat and salinity of the North Atlantic, preconditioning it for the formation of the global thermohaline circulation cell, a driving force of the world climate [ Gordon etal. , 1992]. Our objective in the KAPEX is to trace the flow of intermediate water around southern Africa by the Agulhas, Benguela, and South Atlantic Current systems and to answer key questions about the inter‐oceanic intermediate circulation.
    Type of Medium: Online Resource
    ISSN: 0096-3941 , 2324-9250
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1998
    detail.hit.zdb_id: 24845-9
    detail.hit.zdb_id: 2118760-5
    detail.hit.zdb_id: 240154-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 1997
    In:  Journal of Atmospheric and Oceanic Technology Vol. 14, No. 4 ( 1997-08), p. 938-949
    In: Journal of Atmospheric and Oceanic Technology, American Meteorological Society, Vol. 14, No. 4 ( 1997-08), p. 938-949
    Type of Medium: Online Resource
    ISSN: 0739-0572 , 1520-0426
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 1997
    detail.hit.zdb_id: 2021720-1
    detail.hit.zdb_id: 48441-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 1995
    In:  Journal of Atmospheric and Oceanic Technology Vol. 12, No. 4 ( 1995-08), p. 923-934
    In: Journal of Atmospheric and Oceanic Technology, American Meteorological Society, Vol. 12, No. 4 ( 1995-08), p. 923-934
    Type of Medium: Online Resource
    ISSN: 0739-0572 , 1520-0426
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 1995
    detail.hit.zdb_id: 2021720-1
    detail.hit.zdb_id: 48441-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1997
    In:  Journal of Geophysical Research: Oceans Vol. 102, No. C9 ( 1997-09-15), p. 20967-20986
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 102, No. C9 ( 1997-09-15), p. 20967-20986
    Abstract: The flow of the low‐salinity Antarctic Intermediate Water (AAIW) at 700–1150 m depth across the Rio Grande Rise and the lower Santos Plateau is studied under the auspices of the World Ocean Circulation Experiment (WOCE) in the context of the Deep Basin Experiment. Our data set consists of several hydrographic sections, a collection of 15 RAFOS float trajectories, and records from 14 moored current meters. The data were gathered during different intervals between 1990 and 1994. The inferred flow field strongly supports a basinwide anticyclonic recirculation cell in the subtropical South Atlantic underneath the wind‐driven gyre. Its center, which appears to be southeast of the Rio Grande Rise, separates the eastward advection of AAIW below the South Atlantic Current from the westward flowing, recirculating AAIW. The two near‐shelf limbs closing the circumference of AAIW flow are formed in the east by the deep Benguela Current, potentially modulated by salty inflow of Indian Ocean Intermediate Water, and in the west by the Brazil Current system. Further important circulation elements are the Brazil‐Falkland (Malvinas) Confluence Zone at 40°S and an unnamed divergence at 28°S close to the 1000 m isobath. The resulting broad southward flow of AAIW augments the share of modified, i.e., saltier, intermediate water in the source region of the South Atlantic Current, while the smaller northward flow marks the source of a narrow equatorward Western Intermediate Boundary Current, ultimately leaving the South Atlantic. This shelf‐trapped jet is clearly documented in hydrographic data from 19°S and in nearby current meter records. The jet contrasts a sluggish flow across this latitude east of 35°W. A continuous flow of AAIW from its subpolar region in the southwestern Argentine Basin all along the western slope toward the equator appears unlikely between 35°S and 25°S.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1997
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Elsevier BV ; 1999
    In:  Deep Sea Research Part II: Topical Studies in Oceanography Vol. 46, No. 1-2 ( 1999-1), p. 355-392
    In: Deep Sea Research Part II: Topical Studies in Oceanography, Elsevier BV, Vol. 46, No. 1-2 ( 1999-1), p. 355-392
    Type of Medium: Online Resource
    ISSN: 0967-0645
    Language: English
    Publisher: Elsevier BV
    Publication Date: 1999
    detail.hit.zdb_id: 1141627-0
    detail.hit.zdb_id: 1500312-7
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1999
    In:  Journal of Geophysical Research: Oceans Vol. 104, No. C9 ( 1999-09-15), p. 21063-21082
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 104, No. C9 ( 1999-09-15), p. 21063-21082
    Abstract: The subsurface flow within the subantarctic and subtropical regions around the Brazil‐Malvinas (Falkland) Confluence Zone is studied, using daily hydrographic and kinematic data from four subsurface floats and a hydrographic section parallel to the South American shelf. The float trajectories are mapped against sea surface flow patterns as visible in concurrent satellite sea surface temperature (SST) images, with focus on the November 1994 and October/November 1995 periods. The unprecedented employment of Lagrangian θ‐ S diagrams enables us to trace the advection of patches of fresh Antarctic Intermediate Water (AAIW) from the Confluence Zone into the subtropical region. The fresh AAIW consists of a mixture of subtropical AAIW and Malvinas Current core water. Within the subtropical gyre, these patches are discernible for extended periods and drift over long distances, reaching north to 34°S and east to 40°W. The cross‐frontal migration of quasi‐isobaric floats across the Confluence Zone from the subtropical to the subantarctic environment is observed on three occasions. The reverse process, float migration from a subpolar to a subtropical environment was observed once. These events were located near 40°S, 50°W, the site of a reoccurring cold core feature. Subsurface float and SST data comparison reveals similarities with analogous observations made in the Gulf Stream [ Rossby , 1996] where cross‐frontal processes were observed close to meander crests. The limited number of floats of this study and the complex structure of the Brazil‐Malvinas Confluence Zone, however, restricts the analysis to a description of two events.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1999
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...