GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1995
    In:  Journal of Geophysical Research: Oceans Vol. 100, No. C3 ( 1995-03-15), p. 4389-4398
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 100, No. C3 ( 1995-03-15), p. 4389-4398
    Abstract: During the multidisciplinary ‘NEW92’ cruise of the United States Coast Guard Cutter (USCGC) Polar Sea to the recurrent Northeast Water (NEW) Polynya (77–81°N, 6–17°W; July–August 1992), total dissolved inorganic carbon and total alkalinity in the water column were measured with high precision to determine the quantitative impact of biological processes on the regional air‐sea flux of carbon. Biological processes depleted the total inorganic carbon of summer surface waters by up to 2 mol C m −2 or about 3%. On a regional basis this depletion correlated with depth‐integrated values of chlorophyll a , particulate organic carbon, and the inorganic nitrogen deficit. Replacement of this carbon through exchange with the atmosphere was stalled owing to the low wind speeds during the month of the cruise, although model calculations indicate that the depletion could be replenished by a few weeks of strong winds before ice forms in the autumn. These measurements and observations allowed formulation of a new hypothesis whereby seasonally ice‐covered regions like the NEW Polynya promote a unique biologically and physically mediated “rectification” of the typical (ice free, low latitude) seasonal cycle of air‐sea CO 2 flux. The resulting carbon sink is consistent with other productivity estimates and represents an export of biologically cycled carbon either to local sediments or offshore. If this scenario is representative of seasonally ice‐covered Arctic shelves, then the rectification process could provide a small, negative feedback to excess atmospheric CO 2 .
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1995
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 1999
    In:  Journal of Climate Vol. 12, No. 1 ( 1999-01-01), p. 147-158
    In: Journal of Climate, American Meteorological Society, Vol. 12, No. 1 ( 1999-01-01), p. 147-158
    Abstract: Measurements of the long- and shortwave incident radiation taken from the USCGC Polar Sea during a research cruise to the Northeast Water Polynya during the summer of 1993 are analyzed together with observations of cloud type and amount to determine the effects of summertime Arctic clouds on the surface radiation budget. It is found that the solar zenith angle is critical in determining whether clouds heat or cool the surface. For large solar zenith angles ( & gt;∼80°) the infrared heating effect of clouds is greater than the reduction in insolation caused by clouds, and the surface is heated by the presence of cloud. For smaller zenith angles, cloud cover cools the surface, and for intermediate zenith angles, the surface radiation budget is insensitive to the presence of, or changes in, cloud cover.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 1999
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 78, No. 12 ( 1997-12), p. 2797-2815
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 1997
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...