GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • iron  (1)
  • 1995-1999  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 29 (1995), S. 159-181 
    ISSN: 1573-515X
    Keywords: iron ; microbial mat ; porewater ; pyrite ; sedimentary geochemistry ; Spartina alterniflora ; sulfur
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract This study combines an analysis of porewater chemistry with new, solid phase wet chemical extractions to examine the seasonal cycling of Fe in vegetated and unvegetated (cyanobacterial mat) saltmarsh sediments. Saltmarsh sediments are shown to contain more solid phase reactive Fe than other marine sediments studied so far. From the partitioning and speciation of solid Fe, and solid/soluble reduced S analysis in 10 sediment cores, we have observed that a majority of solid Fe in these sediments is cycled rapidly and completely between oxidized reactive Fe and reduced Fe as pyrite. Vegetated porewaters showed a lower pH and much higher Fe(II) concentrations on average than unvegetated porewaters in the top 10 cm, whereas sulfate, alkalinity, and sulfide concentrations were similar in the two environments. The amorphous Fe(III) oxide fraction showed a high negative correlation to solid and soluble reduced S (r 2 = −0.86 and −0.71, respectively) in surface vegetated sediments whereas the crystalline Fe(III) oxide fraction showed a high negative correlation (r 2 = −0.96) to sulfide only at depth. Though reactive Fe was observed in unvegetated sediments, no seasonal trend was apparent and the speciation of solid Fe revealed that most of it was reduced. Solid phase and porewater chemistry support the dominant role of the biota (Spartina alterniflora and bacteria) in controlling the reactivity of Fe and suggest that the current definition of solid phase, reactive Fe should be expanded to include crystalline Fe(III) minerals which are available for pyrite formation in saltmarsh sediments. In support of previous saltmarsh studies, we present evidence that the redox cycle of solid Fe is controlled by sulfate reduction and sediment oxidation which respond to both annual cycles (light, temperature) and to short-term, episodic effects such as weather and tides.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...